kaggle信用数据科学竞赛 2018年Kaggle家庭信用违约风险机器学习竞赛完成的作品集 比赛可以在。 所有内核都可以在Kaggle上免费运行,可以在
2021-11-09 16:00:22 1.52MB JupyterNotebook
1
布局 标题 上一次更改 维基 Jupyter笔记本 2020/11/15 12:41:21 深度学习 Scikit,学习上的IRIS数据集的感知器,神经网络,Keras。 TensorFlow Implementaion在MNIST数据集。 Softmax,交叉熵损失 使用PyTorch进行梯度计算。 层调试。 验证合并,连接方法。 在文本嵌入上验证Conv1D。 验证Image数据集上的Conv2D。 验证LSTM计算。 器具Seq2Seq学习的执行加法。 器具Seq2Seq有注意力用于添加任务。 注意机制 注意 自然语言处理 论文“神经概率语言模型(Bengio等,2003)”的实现 UCI新闻数据集上具有CNN的多类别分类。 基本字符级Seq2Seq模型 带有ELMo嵌入的情感分析。 AllenNLP教程 使用CNN / TensorBoard进行文本分类 BERT文章的示例代码。 常规机器学习 IRIS数据集的决策树可视化。 从头开始决策树从头开始 决策树,随机森林,UCI新闻数据集上的朴素贝叶斯。 在UCI新闻数据集上训练朴素贝叶斯分
2021-11-05 21:00:34 19.07MB nlp data-science machine-learning statistics
1
Python中的随机森林 归纳法 我开始这个项目是为了更好地了解和工作方式。 此时,分类器仅基于基尼系数,而回归模型基于均方误差。 分类器和回归模型都可以与和 例子 使用Scikit学习的基本分类示例: from randomforests import RandomForestClassifier import pandas as pd from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.pipeline impo
1
数据科学工作 在此项目中,Glassdoor的所有20,000个数据科学工作被刮除并用于对数据科学工作市场进行深入分析。 使用频率和相关薪水分析个人技能,软件和资格,以从雇主的角度确定不同属性的价值。 还制作了一篇论文,正在审查中,以供在《数据科学期刊》上发表。
2021-11-02 12:55:30 8.12MB JupyterNotebook
1
SQL数据科学基础 笔记和练习SQL | Coursera专业化| UCDavis 课程1:SQL for Data Science 本课程包含4个模块: SQL入门和选择与检索数据 使用SQL过滤,排序和计算数据 SQL中的子查询和联接 使用SQL修改和分析数据
2021-10-30 17:43:31 2KB
1
MatrixProfile MatrixProfile是Matrix Profile Foundation为您提供的Python 3库,用于挖掘时间序列数据。 Matrix Profile是一种新颖的数据结构,具有由UC-Riverside的Keogh和Mueen研究小组和新墨西哥大学开发的相应算法(踩踏,体制,主题等)。 该库的目的是通过标准化核心概念,简化的API和合理的默认参数值,使新手和专家都可以使用这些算法。 除了此Python库之外,Matrix Profile Foundation还提供了其他语言的实现。 这些语言具有相当一致的API,使您可以轻松地在它们之间进行切换,而无需花费大量学习时间。 tsmp -R实现 go-matrixprofile -Golang实现 Python支持 当前,我们支持以下版本的Python: 3.5 3.6 3.7 3.8 3
2021-10-29 18:50:30 4.38MB python data-science data-mining time-series
1
用关键字捕捉推文 通过该项目,您可以使用Twitter API使用输入的单词和日期从API中提取数据。 输出示例 入门 这些说明将为您提供在本地计算机上运行并运行的项目的副本,以进行开发和测试。 先决条件 Python 2.7和Pip 正在安装 git clone https://github.com/dogukanayd/Catch-Tweet-with-Keyword.git cd Catch-Tweet-with-Keyword pip install -r requirements.txt 在settings.py中输入您自己的密钥 YOUR_CONSUMER_KEY = 'Y
2021-10-26 11:21:03 178KB python data-science data-mining social-media
1
最佳实践 在材料信息学研究中应该(也应该不)做的事情。 这是一个知识库,其中包含与出版物“材料科学家的机器学习:最佳实践入门指南”相关的Python代码和Jupyter笔记本。 包括这些笔记本是为了说明按照最佳实践创建的假设的材料科学机器学习项目。 该项目的目标是在给定化学成分和条件(测量温度)的情况下预测材料的热容量。 要阅读制作这些笔记本的主要出版物,请参阅: 汪宇东; 默多克,瑞安·J。 Kauwe,史蒂文·K。 Oliynyk,Anton O .; 亚历山大·古洛; 雅各布,布高奇; 克里斯汀·A·Perl森; Sparks,Taylor D., , 《材料化学》, 2020年, 32(12) :4954–4965。 DOI: 。 目录 如何引用 安装 打开Jupyter笔记本 使用Jupyter笔记本 如何引用 如果您选择采用或改编此“方法/协议”文章中提到的方法,请
2021-10-22 11:02:06 10.68MB python data-science machine-learning jupyter
1
决策树分类matlab代码应用机器学习和数据科学食谱-面向初学者的数据科学编码训练营 使用Python,R和MATLAB的应用机器学习和数据科学 适用于应用机器学习和数据科学的Python,R和MATLAB代码列表 应用机器学习和数据科学的7个步骤: 通过编码分类学习: 分类: 数据分析: 数据科学: 数据可视化: 机器学习食谱: 熊猫: Python: SKLEARN: 监督学习: 表格数据分析: 端到端数据科学食谱: 应用统计: 套袋乐团: 促进合奏: CatBoost: 聚类: 数据分析: 数据科学: 数据可视化: 决策树: LightGBM: 机器学习食谱: 多类别分类: 神经网络: Python机器学习: Python机器学习速成课程: R分类: R对于初学者: R for Business Analytics: R for Data Science: 用于数据可视化的R: 适用于Excel用户的R: R机器学习: R机器学习速成课程: R回归: 回归: XGBOOST: 有抱负的数据科学家的项目组合项目:表格文本和图像数据分析以及Python和R @中的时间序列预测 西澳大
2021-10-19 16:49:27 1KB 系统开源
1
SQL-for-data-science-Coursera-answers 此处提供了名为 SQL for Data-Science 的 Coursera 作业的所有答案。 访问链接以获取并兼容简单的视图和集成。
2021-10-18 10:54:04 18KB answers data-science sql coursera
1