演示网站: : 人人社交媒体完整项目 基于社交媒体应用程序的 MERN 堆栈项目。 这是完全可行的项目。 它的完全响应式应用程序。 MongoDB Express React Redux NodeJs 是这个项目的用户。 本项目包含的功能: 用户特点: 注册和登录用户。 可以使用相机或文件系统上传帖子图像。 每页分页。 黑暗模式。 复制帖子链接。 报告垃圾邮件帖子。 按用户名搜索其他用户。 用户建议菜单。 将任何帖子保存到收藏夹。 保存的帖子页面。 删除帖子和评论。 包括管理面板。 探索页面以查看随机用户的其他帖子。 通知页面。 个人资料页。 编辑个人资料页面用户数据。 密码以加盐加密格式存储在数据库中。 创建和编辑帖子。 喜欢,评论,分享和编辑帖子。 帖子包括文本(标题)和图像。 对帖子发表评论。 回复评论。 像彗星。 清除通知选项。
2024-08-23 10:36:31 454KB redux nodejs social express
1
社交媒体智能手机应用 用React Native编写的社交媒体应用程序。 应用需要连接到使用postgresql创建的数据库。 该应用程序的主要目标是将参与附近同一事件的用户配对(“ tinderlike”用户向右滑动以喜欢一个人,然后向左滑动以拒绝)。 一旦允许配对的用户互相发短信,创建新事件并在他们的墙上添加帖子。 用户还可以个性化他们的个人资料:更改个人资料照片,个人信息,描述等。
2024-02-18 10:38:51 135.76MB TypeScript
1
跨社交媒体的用户链接- 从用户个人资料和用户生成的内容中提取特征,并判断两个帐户是否属于社交媒体上的同一用户
2022-05-05 11:12:07 406KB JavaScript
1
Focused on the mathematical foundations of social media analysis, Graph-Based Social Media Analysis provides a comprehensive introduction to the use of graph analysis in the study of social and digital media. It addresses an important scientific and technological challenge, namely the confluence of graph analysis and network theory with linear algebra, digital media, machine learning, big data analysis, and signal processing. Supplying an overview of graph-based social media analysis, the book provides readers with a clear understanding of social media structure. It uses graph theory, particularly the algebraic description and analysis of graphs, in social media studies. The book emphasizes the big data aspects of social and digital media. It presents various approaches to storing vast amounts of data online and retrieving that data in real-time. It demystifies complex social media phenomena, such as information diffusion, marketing and recommendation systems in social media, and evolving systems. It also covers emerging trends, such as big data analysis and social media evolution. Describing how to conduct proper analysis of the social and digital media markets, the book provides insights into processing, storing, and visualizing big social media data and social graphs. It includes coverage of graphs in social and digital media, graph and hyper-graph fundamentals, mathematical foundations coming from linear algebra, algebraic graph analysis, graph clustering, community detection, graph matching, web search based on ranking, label propagation and diffusion in social media, graph-based pattern recognition and machine learning, graph-based pattern classification and dimensionality reduction, and much more. This book is an ideal reference for scientists and engineers working in social media and digital media production and distribution. It is also suitable for use as a textbook in undergraduate or graduate courses on digital media, social media, or social networks. Table of Contents Chapter 1 - Graphs in Social and Digital Media Chapter 2 - Mathematical Preliminaries: Graphs and Matrices Chapter 3 - Algebraic Graph Analysis Chapter 4 - Web Search Based on Ranking Chapter 5 - Label Propagation and Information Diffusion in Graphs Chapter 6 - Graph-Based Pattern Classification and Dimensionality Reduction Chapter 7 - Matrix and Tensor Factorization with Recommender System Applications Chapter 8 - Multimedia Social Search Based on Hypergraph Learning Chapter 9 - Graph Signal Processing in Social Media Chapter 10 - Big Data Analytics for Social Networks Chapter 11 - Semantic Model Adaptation for Evolving Big Social Data Chapter 12 - Big Graph Storage, Processing and Visualization
2022-03-27 22:43:55 25.65MB Graph Social Media Analysis
1
Book-SocialMediaMiningPython, 书"Mastering Social Media Mining with Python"的配套代码 master python使用 python 插件( July )的掌握社会媒体挖掘的代码库 在 Packt出版社出版电子书和平装书( 发布商)电子书和平装本在 Amazon.com 和亚马逊。作者博客 在书上看到一眼鸟眼在
2022-03-14 20:44:20 5.09MB 开源
1
用关键字捕捉推文 通过该项目,您可以使用Twitter API使用输入的单词和日期从API中提取数据。 输出示例 入门 这些说明将为您提供在本地计算机上运行并运行的项目的副本,以进行开发和测试。 先决条件 Python 2.7和Pip 正在安装 git clone https://github.com/dogukanayd/Catch-Tweet-with-Keyword.git cd Catch-Tweet-with-Keyword pip install -r requirements.txt 在settings.py中输入您自己的密钥 YOUR_CONSUMER_KEY = 'Y
2021-10-26 11:21:03 178KB python data-science data-mining social-media
1
Python Social Media Analytics by Siddhartha Chatterjee English | 28 July 2017 | ISBN: 1787121488 | ASIN: B01MXL4UYG | 312 Pages | AZW3 | 8.63 MB Leverage the power of Python to collect, process, and mine deep insights from social media data About This Book Acquire data from various social media platforms such as Facebook, Twitter, YouTube, GitHub, and more Analyze and extract actionable insights from your social data using various Python tools A highly practical guide to conducting efficient social media analytics at scale Who This Book Is For If you are a programmer or a data analyst familiar with the Python programming language and want to perform analyses of your social data to acquire valuable business insights, this book is for you. The book does not assume any prior knowledge of any data analysis tool or process. What You Will Learn Understand the basics of social media mining Use PyMongo to clean, store, and access data in MongoDB Understand user reactions and emotion detection on Facebook Perform Twitter sentiment analysis and entity recognition using Python Analyze video and campaign performance on YouTube Mine popular trends on GitHub and predict the next big technology Extract conversational topics on public internet forums Analyze user interests on Pinterest Perform large-scale social media analytics on the cloud In Detail Social Media platforms such as Facebook, Twitter, Forums, Pinterest, and YouTube have become part of everyday life in a big way. However, these complex and noisy data streams pose a potent challenge to everyone when it comes to harnessing them properly and benefiting from them. This book will introduce you to the concept of social media analytics, and how you can leverage its capabilities to empower your business. Right from acquiring data from various social networking sources such as Twitter, Facebook, YouTube, Pinterest, and social forums, you will see how to clean data and make it ready for analytical operations using var
2021-10-20 10:16:54 8.63MB Python 社交媒体
1
信息安全_数据安全_Putin_is_Posting:Social_Media,_V 安全运营 安全防御 安全测试 web安全 安全人才
2021-08-22 13:00:20 19.24MB 法律法规 业务安全 漏洞分析 渗透测试
信息安全_数据安全_D2T1 - Social Media Mining for T 信息安全 安全加固 安全现状 内网安全 基础设施
2021-08-22 09:00:05 10.62MB 安全管控 信息安全 AI 数字认证
five-steps-to-defend-against-social-media-weaponization.pdf
2021-08-21 19:00:35 1.57MB 安全