最优化原理和方法》是北京工业大学出版的一本专业书籍,专注于探讨最优化这一关键的数学和计算领域。最优化理论是解决实际问题,如工程设计、经济规划、数据分析等领域的核心工具。这本书旨在为读者提供一个全面的视角,深入理解最优化的基本原理及其应用。 最优化原理主要包括线性规划、非线性规划、动态规划、整数规划、几何编程、随机优化、全局优化等多个方面。线性规划是最早被系统研究的最优化问题类型,通过构建线性目标函数和线性约束条件,寻找最优解。非线性规划则涉及到目标函数或约束条件为非线性的情况,处理起来更为复杂。动态规划则是解决多阶段决策问题的有效方法,通过建立状态转移方程来寻找最优策略。 在实际应用中,整数规划往往用于处理具有离散变量的问题,比如资源分配、生产计划等。几何编程是一种特殊的非线性优化形式,适用于处理涉及几何形状和尺寸的设计问题。随机优化处理的是含有随机因素的优化问题,如风险管理和金融工程。全局优化则致力于找到全局最优解,对于非凸或非连续函数,这是一个极具挑战性的任务。 最优化方法涵盖了很多算法,如梯度下降法、牛顿法、拟牛顿法、单纯形法、动态规划的贝尔曼方程解法、遗传算法、模拟退火算法等。这些算法各有优劣,适应不同的问题场景。例如,梯度下降法是求解无约束优化问题的常用方法,适合大规模数据集;而牛顿法和拟牛顿法则适用于寻找局部极小值,它们利用二阶导数信息,通常比一阶方法更快收敛。 此外,书中可能还会涵盖一些现代最优化的热点话题,比如机器学习中的优化问题、深度学习网络的训练策略、大数据环境下的分布式优化算法等。这些内容不仅理论性强,而且与实际应用紧密相连,能够帮助读者提升解决实际问题的能力。 压缩包中的《最优化原理和方法北京工业大学.pdf》很可能是这本书的电子版,读者可以通过它详细学习各种最优化理论和方法。"E书说明.txt"可能是关于如何阅读和使用电子书的指南,"阅读器下载.htm"则可能是推荐的电子书阅读器下载链接,确保用户能顺利阅读PDF文件。 《最优化原理和方法》是一本深入浅出的教程,无论你是初学者还是经验丰富的从业者,都能从中受益,提升自己在最优化领域的理论知识和实践技能。
2025-10-23 19:42:14 3.18MB
1
遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和生物进化机制的优化算法,通过选择、交叉和变异等操作在解空间中搜索最优解 。它适用于复杂问题的优化,如物流配送中心选址问题。 物流配送中心选址问题是一个典型的组合优化问题,目标是选择合适的物流中心位置,以最小化运输成本、运输时间等目标,同时满足各种约束条件,如物流中心的最大容量限制 。 在本案例中,采用二进制编码方式。chrom1 表示物流中心是否被选中,chrom2 和 chrom3 分别表示物流中心的位置坐标和分配需求量 。 种群规模:NIND=200,表示种群中有200个个体。 最大迭代次数:MAXGEN=2000。 变量数量:NVAR=55。 预算限制:Cmax=5000000,即总成本不能超过500万。 变异概率:Pm=0.3 。 随机生成初始种群,确保所选物流中心数量满足设定范围 。 适应度函数用于评估每个个体的优劣。主要考虑总成本和是否违反约束条件(如物流中心的最大容量限制)。通过调用 calobjvalue 和 calfitvalue 函数完成适应度计算 。 根据适应度值选择表现良好的个体,常用策略包括轮盘赌选择、锦标赛选择等 。 交叉操作模拟基因重组,通过交换两个个体的部分基因生成新的后代。本案例采用简单交叉方式,交换部分染色体片段 。 变异操作通过随机改变个体的某些基因来增加种群多样性,避免陷入局部最优解。变异率设为 Pm 。 遗传算法的核心是迭代更新种群。每次迭代包括评估当前种群、选择优秀个体、执行交叉与变异操作,直至达到预设迭代次数或找到满意解 。 通过上述步骤,遗传算法可以有效解决物流配送中心选址问题。实际应用中,需进一步调整参数和优化代码以提高性能,还可以引入多目标优化技术来处理更复杂的物流场景 。
2025-10-23 15:56:19 56KB 物流中心选址 遗传算法
1
利用粒子群算法对电动汽车充电站进行选址和定容优化的研究。首先,通过两步筛选法,即地理因素初筛和服务半径覆盖,确定充电站的候选站址。然后,构建了一个以总成本最小化为目标的数学模型,其中包括投资、运行、维护成本以及网损费用,并引入了惩罚项确保需求全覆盖。接着,采用粒子群算法对该模型进行了高效求解,展示了关键代码片段及其功能解释。最后,通过MATLAB实现了整个流程并提供了可视化结果。 适合人群:从事智能交通系统、电力系统规划、优化算法研究的专业人士,尤其是对粒子群算法和MATLAB有一定了解的研究人员和技术人员。 使用场景及目标:适用于需要解决电动汽车充电站布局优化问题的实际项目中,旨在降低建设运营成本的同时提高服务质量,确保充电设施的有效分布。 其他说明:文中提供的MATLAB代码不仅简洁明了,而且经过精心设计,在处理复杂约束条件下表现出色,可以作为相关领域的参考范例。
2025-10-23 14:57:04 346KB
1
利用粒子群算法对电动汽车充电站进行选址和定容优化的方法。具体来说,作者结合了交通网络流量和道路权重,构建了一个基于IEEE33节点系统的耦合模型,并通过MATLAB实现了这一优化过程。文中不仅提供了关键的适应度函数和粒子群迭代公式的代码片段,还分享了一些实用的经验技巧,如参数调整、避免局部最优等问题。此外,作者指出高峰时段的交通热点并不一定是建设充电站的最佳位置,强调了耦合模型的重要性。 适合人群:从事智能交通系统、电力系统规划以及相关领域的研究人员和技术人员。 使用场景及目标:适用于需要解决电动汽车充电站布局问题的实际工程项目,旨在提高充电设施的效率和服务质量,同时降低建设和运营成本。 其他说明:附带的小功能可以生成动态负荷曲线图,有助于更好地展示不同的充电策略对电网的影响。整个模型运行时间约为15分钟,推荐将种群数量设定为30-50。
2025-10-23 14:56:42 393KB 粒子群算法 MATLAB 电力系统
1
本书深入探讨了多智能体系统在通信网络上的协同控制问题,重点介绍了最优和自适应设计方法。书中阐述了如何通过分布式协议确保所有智能体达成共识或同步,涵盖了一阶和二阶系统、队形控制及图拓ology的影响。此外,书中还探讨了最优控制和自适应控制在图上的实现,强调了局部和全局最优性之间的关系及其在实际应用中的挑战。通过实例和理论分析,本书为读者提供了理解和解决多智能体系统协同控制问题的全面指南。 多智能体系统的协同控制与优化设计是近年来系统控制领域的热点问题。智能体系统是由多个智能体组成的一个群体,每个智能体拥有一定程度的自治能力,通过相互之间的协调与合作来完成复杂的任务。在这一领域中,协同控制主要是指智能体之间如何通过分布式协议达成一致的行为,即达成共识或同步。优化设计则涉及如何构建最优的控制策略,使得系统的整体性能达到最佳。 本书深入探讨了多智能体系统在通信网络上的协同控制问题,重点介绍了最优和自适应设计方法。所谓最优设计,即是在给定性能指标下,寻找可以使系统性能最优化的控制策略。而自适应设计则是指系统能够在变化的环境或参数下,自动调整自身控制策略,以适应外部变化。 书中详细阐述了分布式协议如何确保所有智能体达成共识或同步,并且覆盖了不同类型的系统模型,例如一阶系统和二阶系统。队形控制和图拓扑的影响也是讨论的关键内容,因为它们直接关系到智能体如何在空间中有效地组织和协同工作。 此外,最优控制和自适应控制在图上的实现也被细致探讨。这涉及到如何将最优控制和自适应控制理论应用到多智能体系统的网络结构上,以及这些控制策略如何在局部和全局水平上影响系统的最优性。这些理论与实际应用中的挑战紧密相连,书中通过实例和理论分析,为读者提供了理解和解决多智能体系统协同控制问题的全面指南。 本书的作者们包括弗兰克·L·刘易斯(Frank L. Lewis)、张红伟(Hongwei Zhang)、克里斯蒂安·亨格斯特-莫夫里克(Kristian Hengster-Movric)和阿比吉特·达斯(Abhijit Das)。他们分别来自德克萨斯大学阿灵顿分校UTA研究所和西南交通大学电气工程学院、以及Danfoss Power Solutions(US)公司。该书由Springer出版,是通讯与控制工程系列的一部分。 在版权方面,本书受到国际版权法律的保护。出版社保留了包括翻译权、翻印权、插图使用、朗诵权、广播权、微缩复制或任何其他物理方式复制、传输或信息存储和检索、电子改编、计算机软件,或通过现在已知或今后开发出的类似或不相似方法的权利。但是,为了评论、学术分析或专门为在计算机系统中执行和使用的材料,可以简短摘录。 本书对于希望深入了解多智能体系统协同控制和优化设计的读者来说,是极具价值的参考资料。它不仅涵盖了理论的全面讨论,也提供了实际应用的案例分析,能够帮助读者在工程实践与理论研究中找到平衡点。
2025-10-22 12:20:33 21.49MB multi-agent systems control theory
1
电动汽车大规模接入电网的双层优化调度策略:协同发电机、电动汽车与风力发电的调度计划研究,考虑大规模电动汽车接入电网的双层优化调度策略 中文文献可对照《考虑大规模电动汽车接入电网的双层优化调度策略》,研究了发电机、电动汽车、风力的协同优化计划问题,提出了一种基于输电和配电系统层面的电动汽车充放电计划双层优化调度策略。 在输电网层,以减少发电机组的运行成本、PM2.5 排放量、用户的总充电成本和弃风电量为目标,建立了基于机组最优组合的上层优化调度模型;在配电网层,以降低网损为目标,考虑网络安全约束和电动汽车的空间迁移特性,建立了基于最优潮流的下层优化调度模型。 在基于标准 10 机输电网和 IEEE33 节点配电网的电力系统仿真模型上,对所提的基于双层优化的大规模电动汽车充放电调度策略进行了仿真分析,验证了所提双层优化调度策略的有效性和优越性。 程序包含注释 ,核心关键词: 大规模电动汽车; 双层优化调度策略; 电网接入; 协同优化; 发电机组; 排放量; 充电成本; 弃风量; 输电网层优化调度模型; 配电网层优化调度模型; 网损; 空间迁移特性; 电力系统仿真模型。,《大规模电动汽
2025-10-21 18:20:22 1.16MB edge
1
内容概要:本文围绕“需求响应动态冰蓄冷系统与需求响应策略的优化研究”展开,结合Matlab代码实现,重点探讨了冰蓄冷系统在电力需求响应背景下的优化运行策略。研究内容涵盖系统建模、动态负荷调控、电价激励机制下的用户响应行为分析,以及多目标优化算法的应用,旨在降低用电成本、平衡电网负荷并提升能源利用效率。文中还涉及风场景生成与削减、无监督聚类算法(如m-ISODATA、kmeans、HAC)在电力系统中的应用,以及其他相关电力系统优化问题的Matlab实现案例,形成一个综合性强、实践导向明确的技术资源集合。; 适合人群:具备一定电力系统、能源工程或自动化背景,熟悉Matlab编程,从事科研或工程应用的研究生、科研人员及工程师,尤其适用于从事需求响应、微电网调度、可再生能源集成等领域工作的技术人员。; 使用场景及目标:①研究冰蓄冷系统在分时电价或激励型需求响应下的优化运行策略;②学习并复现电力系统中风场景削减、聚类分析、多目标优化等典型问题的Matlab实现方法;③支撑学术论文复现、课题研究与仿真验证,提升科研效率与算法应用能力。; 阅读建议:建议结合提供的Matlab代码逐模块学习,重点关注系统建模逻辑与优化算法实现细节,同时参考文中提及的其他研究方向(如微电网调度、状态估计等)进行横向拓展,充分利用附带的网盘资源进行实践操作与对比分析。
1
内容概要:本文复现了《含高比例可再生能源配电网灵活资源双层优化配置》中的运行-规划联合双层优化模型,以上层光伏与储能的选址定容、下层优化调度为核心,采用粒子群算法与多目标粒子群算法进行求解,并基于IEEE33节点系统在MATLAB平台完成仿真。通过kmeans聚类预处理数据,上层确定最佳位置与容量,下层以运行成本和电压偏移量为多目标函数,获取pareto前沿解集并反馈至顶层,实现协同优化。 适合人群:电力系统规划与运行领域的研究人员、具备一定MATLAB编程能力的电气工程专业学生及从事新能源并网技术开发的工程师。 使用场景及目标:①解决高比例可再生能源接入下配电网的稳定性与经济性问题;②为光伏与储能系统的规划提供科学的选址定容方法;③通过多目标优化实现运行调度与长期规划的联动设计。 阅读建议:建议结合Matpower工具箱进行代码实践,重点关注上下层模型的迭代逻辑与多目标优化结果的选择机制,同时可拓展至其他配电网测试系统以验证模型泛化能力。
2025-10-20 08:37:35 791KB
1
利用MATLAB粒子群算法求解电动汽车充电站选址定容问题:结合交通流量与道路权重,IEEE33节点系统模型下的规划方案优化实现,基于粒子群算法的Matlab电动汽车充电站选址与定容规划方案,电动汽车充电站 选址定容matlab 工具:matlab 内容摘要:采用粒子群算法,结合交通网络流量和道路权重,求解IEEE33节点系统与道路耦合系统模型,得到最终充电站规划方案,包括选址和定容,程序运行可靠 ,选址定容; 粒子群算法; 交通网络流量; 道路权重; 充电站规划方案; IEEE33节点系统; 道路耦合模型; MATLAB程序。,Matlab在电动汽车充电站选址定容的优化应用
2025-10-19 18:01:50 1017KB 柔性数组
1
内容概要:本文探讨了利用粒子群算法对城市电动汽车充电站和分布式光伏进行选址定容优化的方法。首先,通过地理信息系统(GIS)数据和两步筛选法确定候选站点,即先排除地形复杂区域,再依据服务半径选择合适的地点。其次,建立了综合考虑建设成本、运行维护费、车主绕路损失及电网损耗加碳排放的成本模型,并通过粒子群算法求解最优解。实验结果显示,在某新区规划中,传统方法需要3小时的计算被压缩到18分钟,显著提高了计算效率。 适合人群:从事电力系统规划、智能交通系统设计的研究人员和技术人员,以及对优化算法感兴趣的学者。 使用场景及目标:适用于城市规划部门在制定电动汽车基础设施布局方案时参考,帮助决策者科学合理地选择充电站的位置和规模,降低建设和运营成本,提升用户体验。 其他说明:文中提供的MATLAB代码片段展示了具体的实现细节,但实际应用还需结合当地政策法规和其他非技术因素考量。
2025-10-19 17:57:01 241KB
1