异常检测必读图书,全面介绍异常检测常用方法,包括统计学方法,机器学习方法等等
2021-11-02 11:54:51 5.38MB Anoma 异常检测 离群点检测
1
支持向量数据描述(SVDD) 用于使用SVDD进行异常检测或故障检测的Python代码。 电子邮件: 主要特点 用于仅包含正训练数据的训练数据集的SVDD模型。 (SVDD) 包含正训练数据和负训练数据的训练数据集的SVDD模型。 (nSVDD) 多种内核功能。 可视化模块,包括ROC曲线图,测试结果图和决策边界。 要求 matplotlib cvxopt 科学的 麻木 scikit_learn 关于SVDD型号 根据以下参考文献,可以构建两种类型的SVDD模型: [1] Tax DMJ,Duin RP W.支持向量数据描述[J]。 机器学习,2004,54(1):45-66。 一个简单的决策边界应用程序(使用不同的内核函数) # -*- coding: utf-8 -*- import sys sys.path.append("..") from src.svdd im
2021-10-24 17:20:16 5.79MB python fault-detection svdd mechine-learning
1
PyOD - 用于异常值检测的Python工具包(也称为异常检测) Python 异常值检测 (PyOD) 部署、文档和统计信息 构建状态、覆盖率、可维护性和许可证 PyOD 是一个全面且可扩展的 Python 工具包,用于检测多元数据中的外围对象。 这个令人兴奋但具有挑战性的领域通常被称为异常值检测或异常检测。 自 2017 年以来,PyOD 已成功应用于各种学术研究和商业产品 [9] [17] [27] [29]。 机器学习社区也通过各种专门的帖子/教程得到了广泛认可,包括 Analytics Vidhya、KDnuggets、Towards Data Science、Computer Vision News 和 awesome-machine-learning。 PyOD 的特色在于:统一的 API、详细的文档和各种算法的交互式示例。 高级模型,包括神经网络/深度学习和异常值集成。 尽可能使用 numba 和 joblib 通过 JIT 和并行化优化性能。 兼容Python 2 & 3。 Python 2.7注意事项:Python 2.7维护将于2020年1
2021-10-22 12:06:45 5.83MB 机器学习
1
针对数据库用户行为异常导致数据库泄露问题,提出了一种基于K-means和naive Bayes算法的数据库用户异常检测方法。首先,利用数据库历史审计日志中用户的查询语句与查询结果,采用K-means聚类方法得到用户的分组;然后,使用naive Bayes分类算法构造用户异常检测模型。与单独使用naive Bayes分类法构造的模型相比,在数据预处理时其精简了用户行为轮廓的表示方法,降低了计算冗余,减少了81%的训练时间;利用K-means聚类方法得到用户组别,使检测的精确率提高了7.06%,F1值提高了3.33%。实验证明,所提方法大幅降低了训练时间,取得了良好的检测效果。
2021-10-15 15:32:32 1.03MB 数据库 用户行为 异常检测
1
rrcf :evergreen_tree: :evergreen_tree: :evergreen_tree: 用于异常检测的鲁棒随机砍伐森林算法的实现 。 S.Guha,N.Mishra,G.Roy和O.Schrijvers,基于流的鲁棒随机采伐森林异常检测,在2016年第33届国际机器学习国际会议论文集(纽约,纽约,第2712-2721页) )。 关于 鲁棒随机砍伐森林(RRCF)算法是一种用于检测流数据中异常值的集成方法。 RRCF提供了许多竞争性异常检测算法所缺乏的许多功能。 具体而言,RRCF: 设计用于处理流数据。 在高维数据上表现良好。 减少不相关尺寸的影响。 优雅地处理可能会掩盖异常值的重复项和几乎重复项。 具有异常评分算法,具有清晰的基本统计含义。 该存储库提供了RRCF算法及其核心数据结构的开源实现,目的是促进实验并实现RRCF算法的未来扩展。 文献资料 在阅读文档 。 安装 使用pip通过pypi安装rrcf : $ pip i
2021-10-14 19:38:15 834KB python machine-learning tree random-forest
1
异常检测、离群分析中文资料,包括了入门的知识,以及基本的算法模型,outlier ensembles 的概述性内容,是学习离群分析和异常检测的上好资料
2021-10-12 17:03:38 5.87MB 离群分析 异常检测 outlieranalysis
1
监控视频中的道路事故检测 北京大学团队2018 Road_Accident数据集上监视视频( )的真实世界异常检测的实现和修改版本。 数据集 道路事故数据集包含796个* .mp4格式的视频(330正常,366异常,100测试)。 数据集链接:正在更新 C3D提取器:使用3D卷积网络学习时空特征( )。 使用Google Colab()提取视频的C3D功能 按照笔记本中的说明提取视频功能。 训练 检查此笔记本以查看文档以及培训/测试过程。 Keras 1.1.0 Theano 0.9.0 的Python 3 可视化结果 Django Web应用程序。 有关更多详细信息,请参见目录。 档案结构 文件/目录 说明 提取C3D视频功能 Python,Matlab通用脚本 测试视频的Groudtruth批注 用于建立C3D Caffe模型的配置文件 训练/测试代码 Jupyter
2021-10-12 11:18:13 352.42MB caffe theano deep-learning keras
1
有关多维时间序列数据异常检测的精选论文7篇,最新总结
2021-10-11 19:56:01 11.61MB 异常检测 论文汇总 paper
1
概述 基于高异质/均匀时间序列多传感器数据的实时异常检测的无监督特征选择和/或无监督深度卷积神经网络和lstm自动编码器的原型。 内置时间序列预测器的可解释AI原型。 无监督特征选择的直观表示如下所示。 无监督实时点异常检测的直观表示如下所示。 从当地的解释,全球理解与解释的AI树木-从这里动机- ,图片来源-https: MSDA 1.0.8 什么是MDSA? MSDA是Python中的开源low-code多传感器数据分析库,旨在在时序多传感器数据分析和实验中将假设减少到洞察周期。 它使用户能够快速,高效地执行端到端的概念验证实验。 该模块通过捕获变化和趋势来建立多维时间序列中的事件,以建立旨在识别相关特征的关系,从而有助于从原始传感器信号中选择特征。 此外,为精确检测实时流数据中的异常,还设计了无监督的深度卷积神经网络以及基于lstm自动编码器的检测器,以在GPU / C
2021-10-11 18:35:00 6.78MB visualization python iot deep-neural-networks
1
DBSCAN异常检测 这是一种受DBScan算法启发的简单算法,但由于DBScan是随机启动的,因此适用于按顺序分析数据。 使用的数据集是一些Yahoo公开数据集,其中包含有关给定时间的Yahoo服务器的信息。 例如,在夜间,由于可能没有活动的用户,服务器的负载较少,但是在白天,由于用户处于活动状态,服务器的负载可能非常大。 主要目标是防止和识别系统异常。 该算法接收三个参数:需要训练的数据集,epsilon和minPts。 在本示例中,将minPts与值1一起使用是因为存在一个单一维度,并且算法从点到点移动并测量其值之间的距离。 最重要的参数是epsilon,因为它是算法测量新的簇或保持当前簇的阈值,当算法测量两个连续点之间的欧几里得距离时。 存在在线学习,因为当算法训练数据时,他能够同时识别出哪些点异常,因此它知道如何处理随机数据。 最具挑战性的部分是找到epsilon的最佳值
2021-10-09 08:13:33 9.74MB JupyterNotebook
1