Python数据分析_二手房房价分析与预测系统_源代码 B站功能展示video地址: https://www.bilibili.com/video/BV1xY4y1G7GU?vd_source=17a54a65e7ad5618c183f7176df0df12#reply118026854496
2022-06-29 15:41:39 3.6MB Python 数据分析 Pandas scikit-learn
1
本文来自于segmentfault,文章详细介绍了Python中如何使用scikit-learn模型对分类、回归进行预测的实现原理等相关知识。摘要:在Python中如何使用scikit-learn模型对分类、回归进行预测?本文简述了其实现原理和代码实现。一旦你在scikit-learn中选择好机器学习模型,就可以用它来预测新的数据实例。初学者经常会有这样的疑问:在本教程中,你将会发现如何在Python的机器学习库scikit-learn中使用机器学习模型进行分类和回归预测。文章结构如下:1.如何构建一个模型,为预测做好准备。2.如何在scikit-learn库中进行类别和概率预测。3.如何
1
对抗性鲁棒性工具箱(ART)v1.5 对抗性鲁棒性工具箱(ART)是用于机器学习安全性的Python库。 ART提供的工具使开发人员和研究人员可以针对逃避,中毒,提取和推理的对抗性威胁捍卫和评估机器学习模型和应用程序。 ART支持所有流行的机器学习框架(TensorFlow,Keras,PyTorch,MXNet,scikit-learn,XGBoost,LightGBM,CatBoost,GPy等),所有数据类型(图像,表格,音频,视频等)和机器学习任务(分类,对象检测,语音识别,生成,认证等)。 了解更多 --- ----- -, --- 该图书馆正在不断发展中。 欢迎反馈,错误报告和贡献
2022-06-22 17:30:56 34.94MB python deep-neural-networks attack scikit-learn
1
Remote_Sensing_Satellite_Map_Segmentation 使用Segnet,SLIC和CRF对轻云和厚云的像素进行分类。
2022-06-20 18:33:45 10.08MB Python
1
使用多种方法完成MNIST分类任务 Python 3.6 Pytorch 1.0 Scikit-learn 0.21 无需下载数据直接跑,代码自动下载 逻辑回归 Logistic Regression 多层感知机 MLP K近邻 KNN 支持向量机 SVM 卷积神经网络 CNN 循环神经网络 RNN
2022-06-19 17:05:18 1.04MB SVM CNN RNN KNN
# 中文命名实体识别 基于条件随机场(Conditional Random Field, CRF)的NER模型 ## 数据集 数据集用的是论文ACL 2018[Chinese NER using Lattice LSTM](https://github.com/jiesutd/LatticeLSTM)中收集的简历数据,数据的格式如下,它的每一行由一个字及其对应的标注组成,标注集采用BIOES,句子之间用一个空行隔开。 ``` 美 B-LOC 国 E-LOC 的 O 华 B-PER 莱 I-PER 士 E-PER 我 O 跟 O 他 O 谈 O 笑 O 风 O 生 O ``` 该数据集就位于项目目录下的`data`文件夹里。 ## 运行结果 具体的输出可以查看`output.txt`文件。 ## 环境 首先安装依赖项: pip3 install -r requirement.txt 安装完毕之后,直接使用 python3 main.py > output.txt 即可训练、评估以及测试模型,评估模型将会打印出模型的精确率、召回率、F1分数值以及混淆矩阵
2022-06-18 18:04:51 613KB NER NLP CRF 源码
1
turbofan_failure:飞机发动机故障预测模型
2022-06-14 09:12:56 22.88MB python tensorflow svm scikit-learn
1
把文件scikit_learn-0.24.2-cp36-cp36m-win_amd64.whl下载到本地后的安装方法见博文https://blog.csdn.net/wenhao_ir/article/details/125260565
2022-06-13 20:04:54 6.43MB scikit_learn-0.2
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition (2022最新版)
2022-06-11 18:09:18 50.31MB Scikit-Learn
1