AdaboostOnMNIST 这是使用两个不同的弱学习者从头开始实现Adaboost算法的方法:决策树分类器和梯度提升分类器。 Adaboost在MNIST上运行以告知奇数和偶数。 经过scikit Learn模型的adaboost测试,并获得了更高的分数。 最小的训练误差为%1.8,在7次迭代中进行了梯度增强。 函数调用为adaboost(X_train,Y_train,inversions_t,Classifier_type),有两种类型的分类器,“ Gradient_Boost”和“ Decision_tree”可以放入第4个输入中。 adaboost返回一个4元组(stump,stump_weights,errors,D_weights) 您可以使用predict(stumps,stump_weights,X_test)对训练集进行预测。 这将返回该X_test的标签数组
2022-06-09 17:13:26 2KB Python
1
本资源是以压缩包的形式的,里面是pdf格式的文档。 《笨办法学python》第三版的页面是没有彩色的, 笨办法学python》第四版的页面是有彩色的,使得学习者一看就能区分内容的性质。 笨办法学python》第四版的下载链接:https://download.csdn.net/download/qq_34536551/10563042 有需要的朋友可以下载。 本书是一本Python入门书籍,适合对计算机了解不多,没有学过编程,但对编程感兴趣的读者学习使用。这本书以习题的方式引导读者一步一步学习编程,从简单的打印一直讲到完整项目的实现,让初学者从基础的编程技术入手,最终体验到软件开发的基本过程。   本书结构非常简单,共包括52个习题,其中26个覆盖了输入/输出、变量和函数三个主题,另外26个覆盖了一些比较高级的话题,如条件判断、循环、类和对象、代码测试及项目的实现等。每一章的格式基本相同,以代码习题开始,按照说明编写代码,运行并检查结果,然后再做附加练习。   Zed Shaw完善了这个堪称世上最好的Python学习系统。只要跟着学习,你就会和迄今为止数十万Zed教过的初学者一样获得成功。
2022-06-01 02:43:37 878KB Python 笨方法 编程 pdf
1
java7 hashmap源码 电商用户行为分析大数据平台 项目介绍 1.基于Spark开发的平台 2.需要有spark基础 3.有很多高级知识和设计模式 4.电商用户行为分析大数据平台(项目名称) 5.访问行为,购物行为,广告点击行为,对这些行为进行分析,使用大数据技术来帮助公司提升业绩。 6.主要的功能模块有用户session分析,页面单跳转化率统计,热门商品离线统计,广告流量实时统计等4个业务模块。 7.所使用的知识点是spark core,spark SQL,spark streaming等三个技术框架。 8.主要是数据倾斜,线上故障,性能调优,troubleshooting等经验。 9.使用模拟数据,希望达到的效果。 10.需求分析,方案设计,数据设计,编码实现,测试以及性能调优等环节。 模块简介 1、用户访问session分析:该模块主要是对用户访问session进行统计分析,包括session的聚合指标计算、按时间比例随机抽取session、获取每天点击、下单和购买排名前10的品类、并获取top10品类的点击量排名前10的session。该模块可以让产品经理、数据分析师以
2022-05-25 18:28:02 1.28MB 系统开源
1
入侵检测SVM 入侵检测算法-SVM和增强型SVM 作者 釜山国立大学金东敏 描述 这是一个通过使用svm和增强型svm检测网络入侵的python项目。 参考文献 [1]姚J.,赵S.,和范L.(2006年7月)。 用于入侵检测的增强型支持向量机模型。 在粗糙集和知识技术国际会议上(第538-543页)。 施普林格,柏林,海德堡。
2022-05-24 14:24:24 6KB python svm scikit-learn intrusion-detection
1
目标分割DeepLab v1ABSTRACT1、 INTRODUCTION2、 RELATED WORK3、 CONVOLUTIONAL NEURAL NETWORKS FOR DENSE IMAGE LABELING3.1 利用空洞算法实现高效的密集滑动窗口特征提取3.2 利用卷积网控制感受野大小,加速密集计算4、 DETAILED BOUNDARY RECOVERY : FULLY-CONNECTED CONDITIONAL RANDOM FIELDS AND MULTI-SCALE PREDICTION4.1 全连通条件随机域CRF精确定位4.2 多尺度预测Reference 原文:Se
2022-05-23 18:53:59 432KB ab crf crf算法
1
站点 小号ELF-细心BiLSTM-ÇRF瓦特第I和T ransferredËmbeddings为因果关系提取。 arXiv论文链接: : 免费访问链接: : (论文中的表6似乎没有被正确编辑...) 强调 提出了一种新颖的因果关系标记方案以服务于因果关系提取 嵌入的嵌入大大减轻了数据不足的问题 自我注意机制可以捕获因果关系之间的长期依赖关系 实验结果表明,该方法优于其他基准 抽象的 从自然语言文本中提取因果关系是人工智能中一个具有挑战性的开放性问题。 现有方法利用模式,约束和机器学习技术来提取因果关系,这在很大程度上取决于领域知识,并且需要相当多的人力和时间来进行特征工程。 在本文中,我们基于新的因果关系标记方案,将因果关系提取公式指定为序列标记问题。 在此基础上,我们提出了一种以BiLSTM-CRF模型为骨干的神经因果提取器,称为SCITE(自注意力BiLSTM-CRF传递嵌
1
timeseries-lstm-keras:基于Jason Brownlee教程,在Keras中使用LSTM递归神经网络在Python中进行时间序列预测
2022-05-21 13:23:01 239KB python deep-learning tensorflow scikit-learn
1
学习卷积神经网络的面部反欺骗 “”论文的实现 结果 CASIA内测 原始数据集:或(密码:h5un) 规模 1.0 1.4 1.8 2.2 2.6 吝啬的 开发EER 0.1094 0.0408 0.0346 0.0339 0.0670 0.0571 测试HTER 0.1033 0.0492 0.0568 0.0675 0.0875 0.0729 测试EER 0.0923 0.0461 0.0578 0.0665 0.0790 0.0683
2022-05-21 11:13:34 12KB deep-learning mxnet face-antispoofing Python
1
论文部分翻译
2022-05-21 09:10:15 1.78MB 论文
1
学习PYTHON数据分析资料。数据科学速查表之Scikit-Learn
2022-05-19 16:47:30 536KB Scikit-Learn
1