1、demo文件夹: YOLOv4目标检测算法针对MVI_40192文件夹数据集的处理效果,比较满意,车辆信息基本都能检测到。
2、road1_demo文件夹: YOLOv4 + DeepSort算法,针对road1.mp4视频数据的目标跟踪、车流量计数效果。人工统计车流量292辆(可能有偏差),算法统计车流量288辆。
3、road2_demo文件夹: YOLOv4 + DeepSort算法,针对road2.mp4视频数据的目标跟踪、车流量计数效果。人工统计车流量29辆,算法统计车流量29辆。
只要视频流车辆清晰、大小合适、轮廓完整,算法处理的精度挺高。
4、road1_tracking.mp4、road2_tracking.mp4: 由目标跟踪处理结果合成的视频流。
***********************************************************************************************
1、deepsort文件夹: 含目标跟踪算法源码,包括:卡尔曼滤波、匈牙利匹配、边框类创建、Track类创建、Tracker类创建。
2、ReID文件夹: 含特征提取算法源码,model_data存储着reid网络的结构、权重,feature_extract_model.py用于创建特征提取类。
3、YOLOv4文件夹: 含目标检测算法源码,model_data存储yolov4网络配置、nets + utils用于搭建模型。decode.py用于将检测结果解码。
4、car_predict.py、yolo.py: 用于验证目标检测算法的效果。
5、main.py: 整个项目的运行入口,直接运行main.py,就可以调用YOLOv4+DeepSort,处理视频流信息,完成目标跟踪和车流量统计。
1