深度学习计算机视觉五大技术:图像分类、对象检测、目标跟踪、语义分割和实例分割 计算机视觉.pdf
CamVid全称:The Cambridge-driving Labeled Video Database,该数据集由剑桥大学工程系于 2008 年发布,相关论文有《Segmentation and Recognition Using Structure from Motion Point Clouds》,是第一个具有目标类别语义标签的视频集合。数据库提供32个ground truth语义标签,将每个像素与语义类别之一相关联。该数据库解决了对实验数据的需求,以定量评估新兴算法。数据是从驾驶汽车的角度拍摄的,驾驶场景增加了观察目标的数量和异质性。 数据集包 括 700 多张精准标注的图片用于强监督学习,可分为训练集、验证集、测试集。同时, 在 CamVid 数据集中通常使用 11 种常用的类别来进行分割精度的评估,分别为:道路 (Road)、交通标志(Symbol)、汽车(Car)、天空(Sky)、行人道(Sidewalk)、电线杆 (Pole)、围墙(Fence)、行人(Pedestrian)、建筑物(Building)、自行车(Bicyclist)、 树木(Tree)。
2022-04-20 22:05:21 179.86MB FCN 语义分割 图像处理
1
输电线路杆塔、导线分割图像数据集(含分割标签,1242张图像,网盘下载链接),输电线路巡检图像数据
1.PointRend复现 2.内含利用CamVid测试的过程,包括数据 3.自己写了数据加载函数 4.如有疑问可私信交流
2022-04-17 16:08:26 183.53MB 语义分割 PointRend
Win10系统下训练RandLA-Net点云语义分割模型_zhaoguanhua的博客-CSDN博客.mhtml
2022-04-14 11:06:34 2.06MB
1
深度学习语义分割
2022-04-13 14:46:12 33KB 语义分割
1
汽车结构语义分割数据集
2022-04-12 17:05:58 438.58MB 汽车 语义分割数据集 深度学习 人工智能
1
将原本的二分类改为多分类TransUnet,里面包含了训练说明,以及测试数据说明
2022-04-11 17:17:38 372.99MB 算法 语义分割 Transformer
描述 此回购包含ICNet实现由PyTorch,基于的Hengshuang赵和等。 al(ECCV'18)。 默认情况下,对进行培训和评估。 要求 带有以下pip3 install -r requirements.txt Python 3.6或更高版本: 火炬== 1.1.0 torchsummary == 1.5.1 火炬视觉== 0.3.0 numpy == 1.17.0 枕头== 6.0.0 PyYAML == 5.1.2 更新 2019.11.15:更改crop_size=960 ,最佳mIoU增至71.0%。 花了大约2天的时间。 获取 表现 方法 浓度(%) 时间(毫秒) 第一人称射击 内存(GB) 显卡 ICNet(论文) 67.7% 33毫秒 30.3 1.6 泰坦X ICNet(我们的) 71.0% 19毫秒 52.6 1.86 GTX
2022-04-09 09:32:43 20.54MB real-time pytorch semantic-segmentation cityscapes
1