EMAN 一个基于SSM框架与物品的协同过滤算法(ItemCF)的简单电子书推荐系统 界面截图 系统功能分析 推荐策略 因部分推荐算法需要使用用户的喜爱数据作为参数。若用户未登录就采用对游客的 推荐策略。若用户已登录就采用对登录用户的推荐策略。其中若登录用户在数据库中存 在感兴趣的分区记录的话就会增加一个来自你感兴趣的分区的推荐。 所以将推荐策略分为是否登录两种情况进行区别。 若用户未登录就采用对游客的用户评分显示策略。若用户已登录就采用对登录用户 的用户评分显示策略。其中若登录用户已经对当前详情页的电子书进行过评分,则显示 其评分记录。 �爬虫爬取策略 系统分析与设计 系统分析 如用例图所示,本系统中的基本用户分为 3 种。分别是游客、注册用户、管理员。 游客可以访问电子书推荐平台的首页、用户注册页面、查看电子书页面。注册用户比游 客多的功能在于可以对电子书进行评分与评论和由该用户预测兴
2022-03-19 14:35:48 107.57MB mysql java bootstrap spring
1
基于协同过滤的高校图书推荐系统
2022-03-16 19:41:10 29.66MB 系统开源
1
目前商用的推荐机制都为混合式推荐,将用户属性、项目属性、用户操作行为、聚类算法、基于用户、基于项目、基于内容等混合推荐。本文主要介绍混合推荐的推荐原理、推荐过程、代码实现。 一、基于用户/项目的混合协同过滤推荐算法推荐原理 混合推荐可使用的数据包括: 1、用户属性:用户位置、用户性别、用户年龄等属性信息; 2、项目属性:项目类别、项目添加时间、项目内容等属性信息; 3、用户操作行为:用户评分、收藏记录、浏览记录、观看时长、购买记录等操作行为; 混合推荐方法可以是先将数据进行聚类(用户聚类、项目聚类等),可进行多次聚类,聚类算法常用的有KMeans聚类、Canopy聚类、KMeans+Canop
2022-03-16 14:58:10 44KB 协同过滤 属性 推荐算法
1
本课程后通过完整的项目实操,帮助学员从构建数据集、特征选择 、模型调参 、模型评估与验证 一步步掌握机器学习项目开发的完整流程,同时能够完整地学习到推荐系统的相关基础知识。
1
电影推荐系统中运用的推荐算法是基于协同过滤算法(Collaborative Filtering Recommendation)。协同过滤是在信息过滤和信息系统中正迅速成为一项很受欢迎的技术。与传统的基于内容过滤直接分析内容进行推荐不同,协同过滤分析用户兴趣,在用户群中找到指定用户的相似(兴趣)用户,综合这些相似用户对某一信息的评价,形成系统对该指定用户对此信息的喜好程度预测。 电影推荐系统中引用了Apache Mahout提供的一个协同过滤算法的推荐引擎Taste,它实现了最基本的基于用户和基于内容的推荐算法,并提供了扩展接口,使用户方便的定义和实现自己的推荐算法。
2022-03-10 00:20:15 3.42MB 协同过滤 推荐 系统
1
电影推荐 CMU 10-701/15-781 课程项目 - 机器学习 基于协同过滤和主题建模(LDA)的电影推荐系统 外部依赖 Apache Commons Math 3.3 用于线性代数的 la4j 库 用于 python 2.7 的 nltk
2022-03-09 14:19:05 369.31MB Java
1
基于协同过滤的高考志愿推荐系统.pdf
Book Crossing 是一个书籍推荐系统数据,用以向用户推荐偏好的书籍。
2022-03-08 23:03:12 50.64MB 推荐系统 协同过滤
1
推荐算法,协同过滤算法
2022-03-08 12:12:57 18.98MB 推荐算法 推荐系统 一键运行
1
在当今的数字世界中,消费的内容种类繁多,例如书籍、视频、文章、电影等,找到自己选择的材料已成为一项万无一失的任务。 另一方面,数字内容提供商希望在最长时间内让越来越多的用户参与到他们的服务中。 推荐系统在哪里出现 内容提供商通过内容向用户提供建议 在本文中,我们提出了一个电影推荐系统。电影推荐系统的目的是为用户提供准确的电影推荐。 通常基本推荐系统做出推荐考虑以下因素之一; 用户偏好称为基于内容的过滤或类似用户的偏好称为协同过滤。 要创建稳定且准确的推荐系统,将使用基于内容的过滤。
2022-03-06 16:51:16 554KB Movies Recommendation System
1