布里萨帕蒂 :pushpin: 介绍 这是各种机器学习算法和实验的集合,通过遵循各种教程,文章博客等内容,这些知识已经在我这边实现了。 这些机器学习算法已在来自 , 等的各种数据集上实现。 :check_mark: 资源 :collision: 笔记本和数据集 姓名 数据集 笔记本 亚马逊情绪分析 使用转移学习进行COVID-19检测 猫狗分类器 使用LSTM的聊天机器人 决策树 假新闻分类 性别预测 印地语字符识别 鸢尾花预测 K均值聚类 线性回归I 线性回归II 线性回归III 逻辑回归 MNIST时尚数据集 朴素贝叶斯 强化学习 葡萄酒数据集 时间序列分析 垃圾邮件检测 IMDB情绪分类 卫星影像分析
1
Kaggle的Quora重复问题检测比赛的解决方案 可以通过以下链接找到比赛: ://www.kaggle.com/c/quora-question-pairs使用该解决方案,我在3307个团队中排名第23(最高1%)。 考虑到其他顶级解决方案,这是一个相对轻量级的模型。 先决条件 从下载预训练的单词向量,即Gloves.840B.300d,并将其放入项目目录。 从下载火车和测试数据。 创建一个名为“数据”的文件夹并将其放入。 将所有软件包安装在requirements.txt中。 管道 该代码是用Python 3.5编写的,并在装有Intel i5-6300HQ处理器和Nvidia G
2021-12-28 22:47:54 63KB nlp neural-network regex siamese-network
1
流量预测 交通预测是使用历史数据(时间序列)预测道路网络(图形)中未来交通测量(例如,体积,速度等)的任务。 通常可以通过排除来更好地定义事物,因此以下是我不包括的类似事物: 不包括纽约出租车和自行车(以及其他类似的数据集,例如uber),因为它们倾向于表示为网格而不是图形。 通过室内,通过兴趣点(POI)值机或通过运输网络来预测人员流动性。 预测轨迹。 通过传感器为自动驾驶汽车预测单个汽车的运动。 交通数据估算。 交通异常检测。 这些文件是随意选择的。 概括 纸上表格和公开数据集的表格摘要。 纸张按时间顺序反向排序。 不保证此表的完整性或准确性(如果发现任何错误,请提出问题)。 纸 会场 出版日期 #个其他数据集 麦德龙 PeMS-BAY PeMS-D7(M) PeMS-D7(L) PeMS-04 PeMS-08 环形 深圳出租车 损失环 PeMS-03 P
2021-12-28 17:07:13 75KB timeseries time-series neural-network mxnet
1
前馈神经网络PoC 带有反向传播的简单实现可概述一些AI知识。 用法 // crate a data set with input- and output-values DataSet train = DataSet.fromArray( // syntactic sugar new double[][] { new double[]{ ... }, ... }, // inputs new double[][] { new double[]{ ... }, ... } // expected ); FNN net = Trainer.builder( inputUnits , outputUnits ) // create a Builder
2021-12-27 19:09:21 11KB feedforward-neural-network fnn Java
1
在FPGA上进行快速,可扩展的量化神经网络推理 FINN是Xilinx研究实验室的实验框架,旨在探索FPGA上的深度神经网络推理。 它专门针对,重点是生成为每个网络定制的数据流样式的体系结构。 由此产生的FPGA加速器是高效的,可以产生高吞吐量和低延迟。 该框架是完全开源的,以提供更高程度的灵活性,并且旨在使神经网络研究能够跨越软件/硬件抽象堆栈的多个层。 我们有一个单独的存储库 ,其中包含几个神经网络的预构建示例。 有关FINN的更多常规信息,请访问并查看。 入门 请参阅“页面,以获取有关需求,安装以及如何以不同模式运行FINN的更多信息。 由于项目依赖项的复杂性质,我们目前仅支持基于Docker的FINN编译器执行。 FINN有什么新功能? 2020-12-17:发布了v0.5b(测试版),其中包括MobileNet-v1的新。 在 上阅读更多内容。 2020-09-21: v0.4b(beta)已发布。 在 上阅读更多内容。 2020-05-08: v0.3b(测试版)发布,最初支持卷积,并行转换,为MVAU提供更灵活的内存分配,吞吐量测试以及许多其他较小的改进和错误修
2021-12-22 15:48:01 4.54MB fpga neural-network compiler dataflow
1
阿尔特罗斯·尤洛 最新的C#实时对象检测系统(Visual Studio)。 该项目具有CPU和GPU支持,使用GPU可以更快地进行检测。 该项目的主要目标是易于使用yolo,该软件包可在nuget上使用,您只需安装两个软件包即可开始检测。 在后台,我们使用Windows Yolo版本的 。 将图像路径或字节数组发送到并接收检测到的对象的位置。 我们的项目旨在将对象类型和-position返回为可处理数据。 该库支持 NuGet 通过快速安装Alturos.Yolo PM> install-package Alturos.Yolo (C# wrapper and C++ dlls 28MB
2021-12-21 08:38:06 92.51MB visual-studio computer-vision csharp neural-network
1
cryptocurrency-price-prediction:使用LSTM神经网络的加密货币价格预测
1
“The ultimate guide to using Python to explore the true power of neural networks through six projects”
2021-12-16 16:02:29 22.81MB Neural Network PACKT James
1
OptiML OptiML是支持向量机和深度神经网络的sklearn兼容实现,根据最新技术,它们都有一些最成功的功能。 这项工作的动机是,有可能通过广泛的优化算法研究对象解决这些模型的数学公式所产生的优化问题,并为“数值方法和优化”课程开发@@在教授的监督下。 内容 数值优化 无约束优化 线搜索方法 零阶方法 次梯度 一阶方法 最陡的梯度下降 共轭梯度 弗莱彻-里夫斯公式 Polak–Ribière公式 Hestenes-Stiefel公式 代formula公式 重球渐变 二阶方法 牛顿 拟牛顿 高炉 随机方法 随机梯度下降 势头 标准 涅斯捷罗夫 亚当 势头 标准 涅斯捷罗夫 毕业证书 势头 标准 涅斯捷罗夫 阿达克斯 势头 标准 涅斯捷罗夫 阿达格拉德 阿达达 RProp RMSProp 具有接口的近端捆绑包,用于 ,
1