全书共分7章,包括引论、线性方程组求解、线性最小二乘问题、非对称特征值问题、对称特征问题和奇异值分解、线性方程组迭代方法及特征值问题迭代方法,本书不仅给出了数值线性代数的常用算法,而且也介绍了多重网格法和区域分解法等新算法,并指导读者如何编写数值软件以及从何处找到适用的优秀数值软件。   本书可作为计算数学和相关理工科专业一年级研究生的教材,也可作为从事科学计算的广大科技工作者的参考书。 第1章 引论  1.1 基本符号  1.2 数值线性代数的标准问题  1.3 一般的方法   1.3.1 矩阵分解   1.3.2 扰动理论和条件数   1.3.3 舍入误差对算法的影响   1.3.4 分析算法的速度   1.3.5 数值计算软件  1.4 例:多项式求值  1.5 浮点算术运算  1.6 再议多项式求值  1.7 向量和矩阵范数  1.8 第1章的参考书目和其他话题  1.9 第1章问题 第2章 线性方程组求解  2.1 概述  2.2 扰动理论  2.3 高斯消元法  2.4 误差分析   2.4.1 选主元的必要性   2.4.2 高斯消元法正式的误差分析   2.4.3 估计条件数   2.4.4 实际的误差界  2.5 改进解的精度   2.5.1 单精度迭代精化   2.5.2 平衡  2.6 高性能分块算法   2.6.1 基本线性代数子程序(blas)   2.6.2 如何优化矩阵乘法   2.6.3 使用3级blas改组高斯消元法   2.6.4 更多的并行性和其他性能问题  2.7 特殊的线性方程组   2.7.1 实对称正定矩阵   2.7.2 对称不定矩阵   2.7.3 带状矩阵   2.7.4 一般的稀疏阵   2.7.5 不超过o(n2)个参数的稠密矩阵  2.8 第2章的参考书目和其他的话题  2.9 第2章问题 第3章 线性最小二乘问题  3.1 概述  3.2 解线性最小二乘问题的矩阵分解   3.2.1 正规方程   3.2.2 qr分解   3.2.3 奇异值分解  3.3 最小二乘问题的扰动理论  3.4 正交矩阵   3.4.1 豪斯霍尔德变换   3.4.2 吉文斯旋转   3.4.3 正交矩阵的舍入误差分析   3.4.4 为什么用正交矩阵  3.5 秩亏最小二乘问题   3.5.1 用svd解秩亏最小二乘问题   3.5.2 用选主元的qr分解解秩亏最小二乘问题  3.6 最小二乘问题解法的性能比较  3.7 第3章的参考书目和其他话题  3.8 第3章问题 第4章 非对称特征值问题  4.1 概述  4.2 典范型  4.3 扰动理论  4.4 非对称特征问题的算法   4.4.1 幂法   4.4.2 逆迭代   4.4.3 正交迭代   4.4.4 qr迭代   4.4.5 使qr迭代有实效   4.4.6 海森伯格约化   4.4.7 三对角和双对角约化   4.4.8 隐式位移的qr迭代  4.5 其他的非对称特征值问题   4.5.1 正则矩阵束和魏尔斯特拉斯典范型   4.5.2 奇异矩阵束和克罗内克典范型   4.5.3 非线性特征值问题  4.6 小结  4.7 第4章参考书目和其他话题  4.8 第4章问题 第5章 对称特征问题和奇异值分解  5.1 概述  5.2 扰动理论  5.3 对称特征问题的算法   5.3.1 三对角qr迭代   5.3.2 瑞利商迭代   5.3.3 分而治之   5.3.4 对分法和逆迭代   5.3.5 雅可比法   5.3.6 性能比较  5.4 奇异值分解算法   5.4.1 双对角svd的qr迭代及其变形   5.4.2 计算双对角svd达到高的相对精度   5.4.3 svd的雅可比法  5.5 微分方程和特征值问题   5.5.1 toda格子   5.5.2 与偏微分方程的关系  5.6 第5章参考书目和其他话题  5.7 第5章问题 第6章 线性方程组迭代方法  6.1 概述  6.2 迭代法的在线(on-line)帮助  6.3 泊松方程   6.3.1 一维泊松方程   6.3.2 二维泊松方程 6.3.3 用克罗内克积表达泊松方程 6.4 解泊松方程方法小结  6.5 基本迭代法   6.5.1 雅可比法   6.5.2 高斯-塞德尔法 6.5.3 逐次超松弛法 6.5.4 模型问题的雅可比、高斯-塞德尔和sor(ω)的收敛性 6.5.5 雅可比、高斯-塞德尔和sor(ω)法明细的收敛准则   6.5.6 切比雪夫加速和对称sor(ssor)  6.6 克雷洛夫子空间方法   6.6.1 通过矩阵-向量乘法得到关于a的信息   6.6.2 利用克雷洛夫子空间kk解ax=b   6.6.3 共轭梯度法   6.6.4 共轭梯度法的收敛性分析   6.6.5 预条件   6.6.6 解ax=b的其他克雷洛夫子空间算法  6.7 快速傅里叶变换   6.7.1 离散傅里叶变换   6.7.2 用傅里叶级数解连续模型问题   6.7.3 卷积   6.7.4 计算快速傅里叶变换  6.8 块循环约化  6.9 多重网格法   6.9.1 二维泊松方程多重网格法概述   6.9.2 一维泊松方程的多重网格法详述  6.10 区域分解法   6.10.1 无交叠方法   6.10.2 交叠方法  6.11 第6章的参考书目和其他话题  6.12 第6章问题 第7章 特征值问题的迭代方法  7.1 概述  7.2 瑞利-里茨方法  7.3 精确算术运算的兰乔斯算法  7.4 浮点算术运算的兰乔斯算法  7.5 选择正交化的兰乔斯算法  7.6 选择正交化之外的方法  7.7 非对称特征值问题的迭代算法  7.8 第7章的参考书目和其他话题  7.9 第7章问题 参考文献(图灵网站下载) 索引
2024-03-17 18:39:09 2.64MB 数值计算
1
电子邮件在我们的日常工作生活中使用地越来越普遍,JAVA邮箱服务器搭建,适合小型企业搭建自己的企业邮箱服务器,简单易学!免费开源的,适合想学习邮箱服务器搭建的同学,拥有自己的邮箱服务器。在邮件系统中至关重要的就是邮件服务器,Apache JamesJames(Java Apache Mail Enterprise Server)是Apache组织的子项目,由Java语言编写的,整合了诸如POP3,SMTP等邮件协议的企业邮件服务器。 提供给开发者处理电子邮件相关的编程接口。它是Sun发布的用来处理email的API。它可以方便地执行一些常用的邮件传输。我们可以基于JavaMail,开发出类似于Microsoft Outlook的应用程序。 SMTP协议:Simple Mail Transfer Protocol,即简单邮件传输协议,用于发送电子邮件 POP3协议:Post Office Protocol 3,即邮局协议的第三个版本,用于接收邮件 IMAP协议:Internet Message Access Protocol,即互联网消息访问协议,是POP3的替代协议。
2024-03-08 13:56:29 492KB java James javamail
1
Java开源邮件服务器apache-james-2.3.2源代码
2023-10-08 08:59:05 10MB james java 邮件服务器
1
Fundamentals of Soil Behavior-James K Mitchell
2023-05-24 11:27:40 17.55MB Fundamentals
1
计算机网络自顶向下方法 (James 著) 机械工业课后答案计算机网络自顶向下方法 (James 著) 机械工业课后答案
1
第一本docker书 中文修订扫描版
2023-04-11 11:28:48 53.86MB docker James Turnbull
1
We adopt, as most mathematicians do, the naive point of view regarding set theory. We shall assume that what is meant by a set of objects is intuitively clear, and we shall proceed on that basis without analyzing the concept further. Such ananalysis properly belongs to the foundations of mathematics and to mathematical logic, and it is not our purpose to initiate the study of those fields.
2023-02-12 16:16:42 9.98MB maths topology
1
学习电路课程的精品教材。此文件为3个压缩包之一,请下载其它两个,并在同一目录下解压。
2022-08-03 17:23:54 57.22MB 电路; 第10版; NILSSON; 周玉坤;
1
James Stewart微积分,国外优秀教材
2022-07-22 14:03:20 67.54MB 微积分
1
This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor- porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (1) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry. (3) The isomorphism theorem is proved first in an elementary way (Theorem 14.2), but later obtained again as a corollary of Serre's Theorem (18.3), which gives a presentation by generators and relations. (4) From the outset, the simple algebras of types A, B, C, D are empha- sized in the text and exercises. (5) Root systems are treated axiomatically (Chapter III), along with some of the theory of weights. (6) A conceptual approach to Weyl's character formula, based on Harish-chandra's theory of "characters" and independent of Freudenthal's multiplicity formula (22.3), is presented in 23 and 24. This is inspired by D.-N. Verma's thesis, and recent work of I. N. Bernstein, I. M. Gel'fand, S. I. Gel'fand. (7) The basic constructions in the theory of Chevalley groups are given in Chapter VII, following lecture notes of R. Steinberg. I have had to omit many standard topics (most of which I feel are better suited to a second course), e.g., cohomology, theorems of Levi and Mal'cev, theorems of Ado and Iwasawa, classification over non-algebraically closed fields, Lie algebras in prime characteristic. I hope the reader will be stirn u- lated to pursue these topics in the books and articles listed under References, especially Jacobson [1], Bourbaki [1], [2], Winter [1], Seligman [1].
2022-07-08 11:00:01 2.84MB Lie Algebras Representation Theory
1