基准化最近的邻居 在高维空间中快速搜索最近的邻居已成为一个越来越重要的问题,但是到目前为止,还没有很多以客观方式比较方法的经验性尝试。 该项目包含一些工具,用于对不同度量的近似最近邻(ANN)搜索的各种实现进行基准测试。 我们已经预生成了数据集(采用HDF5格式),并且还为每种算法提供了Docker容器。 有一个可确保每种算法都能正常工作。 已评估 :LSHForest,KDTree,BallTree :SWGraph,HNSW,BallTree,MPLSH :ONNG,PANNG,QG 数据集 为此,我们有许多预先计算的数据集。 所有数据集均已预先划分为训练/测试数据,并以前100个邻居的形式提供了地面真实数据。 我们以HDF5格式存储它们: 数据集 外型尺寸 火车尺寸 测试尺寸 邻居 距离 下载 96 990万 10,000 100 角度的 (3.6GB) 784 60,000 10,000 100 欧几里得 (217MB) 960 1,000,000 1,000 100 欧几里得 (3.6GB) 25 1,183,514 10,0
2022-09-27 19:41:31 1.17MB docker benchmark nearest-neighbors DockerPython
1
加速度计-生物识别 通过加速度计数据识别移动设备的用户(kaggle上的“加速度计生物识别竞赛”) “ CS 725:机器学习基础”的课程项目 #Description:您可以在找到问题陈述的描述 #如何运行代码: 假设:您将train.csv和test.csv与其他项目文件放在同一文件夹中 运行device_count.py 运行extractMeanVar.py 运行trimmingdata.py 现在,您可以执行任何分类器代码。 只需在同一文件夹中查找所需文件即可。 #我们的方法我们设计了以下解决问题的方法: 朴素贝叶斯 最近的邻居 二次判别分析(类似于LDA) 支持向量机 #与每种方法相关的文件: 1]朴素贝叶斯 1. extractMeanVar.py 2. naive_bayes.py 3. naive_bayes_Random.py 2]最近的邻居 1. t
1
功能1. kNNeighborsRegressor.predict(_) 描述1. 根据一个或多个自变量(预测变量)估计连续变量(目标)的值。 请参阅脚本文件中的示例。
2022-03-11 20:53:48 55KB matlab
1
kNN(k-nearest neighbors algorithm) 此专案以新闻分类进行kNN范例之实作 kNN Introduction: 最近鄰居法(KNN演算法,又譯K-近鄰演算法)是一種用於分類和回歸的無母數統計方法,KNN常用來做資料分類。 KNN是一種監督式學習(Supervised Learning),監督式學習需透過資料訓練出一個model,但KNN沒有做training的動作。 K為使用者自己定義的常數,KNN就是選擇離自己最近的K的鄰居(Data),之後觀察哪一種類別(Tag)的鄰居最多就將自己也當成該類別。 Input: 测试文章: 1.使用ETtoday新聞作為訓練集分類。 2.使用Jieba作為分詞,取出Top 100 Words 作為每篇文章的關鍵詞。 3.取出k=3個最近鄰居作為分類依據,此外對最近的第一個鄰居作為加權*2 Output:
2022-03-04 15:56:12 605KB news tf-idf cosine-similarity knn
1
使用机器学习技术预测肝炎疾病 内容 1.简介2.属性3.框图4.算法和分类器5.获得的结果6.结论 介绍 医学诊断是一项重要且非常复杂的任务,需要准确识别。 重要的是要在适当的时间诊断出疾病并尽早治愈。 肝脏是人体的重要组成部分。 影响肝功能的严重疾病之一是肝炎,它会引起肝脏炎症。 这项工作的主要目的是通过使用不同的ML工具和神经网络体系结构训练同一数据集,并选择那些诊断肝炎疾病的最佳工具来对特定数据集进行比较研究。 属性 属性 价值 年龄 否(1),是(2) 数值 否(1),是(2) 性别 否(1),是(2) 男(1),女(2) 否(1),是(2) 类固醇 否(1),是(2)v 大肝 否(1),是(2) 肝脏公司 否(1),是(2) 蜘蛛网 否(1),是(2) 抗病毒药 否(1),是(2) 疲劳 否(1),是(2) 马拉丝 否(1),是(2) 脾可触及 否
1
K近邻(K-Nearest Neighbors, KNN)算法既可处理分类问题,也可处理回归问题,其中分类和回归的主要区别在于最后做预测时的决策方式不同。KNN做分类预测时一般采用多数表决法,即训练集里和预测样本特征最近的K个样本,预测结果为里面有最多类别数的类别。
2021-10-22 00:25:16 4KB KNN 分类 python 多数表决
1
加权 K-最近邻 (WKNN) 分类器。 每个邻居样本都有一个基于它与测试样本的距离的权重。 近邻在投票中具有更大的权重。
2021-10-20 16:26:02 1.73MB matlab
1
K近邻(K-Nearest Neighbors, KNN)算法既可处理分类问题,也可处理回归问题,其中分类和回归的主要区别在于最后做预测时的决策方式不同。KNN做回归预测时一般采用平均法,预测结果为最近的K个样本数据的平均值。
2021-04-22 21:34:16 4KB KNN 回归 python
1
动态时间扭曲的K最近邻:KNN和DTW分类算法的Python实现
1
由国外著名大学编写的非常有效近似最近邻分类算法,可直接使用,也可作为学习
2020-01-03 11:19:12 1.11MB ann 近似最近邻 人工智能 分类
1