基于内容的新闻推荐系统 实现功能 (1)前台功能模块 前台用户可以进行分类查看各模块下的新闻概要列表并显示基于新闻评论量推荐的新闻列表,点击新闻 封面、标题等可直接进入新闻详情页进行阅读、评论,显示基于词语的新闻推荐列表,搜索框输入来搜 索感兴趣的新闻。 (2)后台功能模块后台管理主要包括系统设置、用户列表管理、系统日志以及新闻管理四个模块。系统设置里面包括进行 菜单按钮增删改查的菜单管理、增删改角色信息的角色管理和修改密码;用户信息管理里面包含了一个 详细的用户信息可以对每个人的详细资料进行了增删或者修改操作;系统日志里面包含了一个日志清 单,可以对日志进行增删操作;新闻管理模块里包括进行增删改查分类信息的分类管理、增删改查新闻 的标题、封面等信息的新闻管理以及增删改新闻的任意一条评论的评论管理。 1、技术栈 Java EE 、Mysql8.0 、 Spring SpringMVC Mybatis JavaScript、 EasyUI、 TF-IDF算法 2、推荐算法 基于内容推荐算法: TF-IDF 基本原理:根据用户的浏览行为,获得用户的兴趣偏好度,为用户推荐跟他
2024-06-02 13:31:31 141.36MB java 推荐算法 新闻推荐系统 推荐系统
1
1.项目利用TF-IDF(Term Frequency-Inverse Document Frequency 词频-逆文档频率)检索模型和CNN(卷积神经网络)精排模型构建了一个聊天机器人,旨在实现一个能够进行日常对话和情感陪伴的聊天机器人。 2.项目运行环境:Python环境、TensorFlow 环境和Python包jieba、tqdm、nltk、pyqt5等。 3.项目包括4个模块:数据预处理、模型创建与编译、模型训练及保存、模型生成。数据来源于GitHub开源语料集,下 载地址为: https://github.com/codemayq。在TF-IDF模型中定义的架构为:计算TF-IDF向量,通过倒排表的方式找到与当前输入类似的问题描述,针对候选问题进行余弦相似度计算。模型生成一是通过中控模块调用召回和精排模型;二是通过训练好的召回和精排模型进行语义分类,并且获取输出。 4.准确率评估:测试准确率在90%左右。 5.项目博客:https://blog.csdn.net/qq_31136513/article/details/131540115
2024-04-11 11:51:58 49.67MB tensorflow 深度学习 人工智能 python
1
基于python的英文文档集上的tf、idf和tf_idf图像绘制,完整代码,博客详见:https://blog.csdn.net/weixin_43863744/article/details/120442166
2023-09-19 18:52:53 2KB tf_idf python 信息检索 plt绘图
1
主要为大家详细介绍了TF-IDF与余弦相似性的应用,找出相似文章,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
2023-04-14 22:50:43 92KB TF IDF 余弦相似性
1
1 TF-IDF TF-IDF是英文Term Frequency–Inverse Document Frequency的缩写,中文叫做词频-逆文档频率。 一个用户问题与一个标准问题的TF-IDF相似度,是将用户问题中每一词与标准问题计算得到的TF-IDF值求和。计算公式如下: TF-IDF算法,计算较快,但是存在着缺点,由于它只考虑词频的因素,没有体现出词汇在文中上下文的地位,因此不能够很好的突出语义信息。 import numpy as np class TF_IDF_Model(object): def __init__(self, documents_list):
2023-04-12 21:05:33 131KB idf python python算法
1
以微博为代表的社交平台是信息时代人们必不可少的交流工具.挖掘微博文本数据中的信息对自动问答、舆情分析等应用研究都具有重要意义.短文本数据的分类研究是短文本数据挖掘的基础.基于神经网络的Word2vec模型能很好的解决传统的文本分类方法无法解决的高维稀疏和语义鸿沟的问题.本文首先基于Word2vec模型得到词向量,然后将类别因素引入传统权重计算方法TF-IDF (Term Frequency-Inverse Document Frequency)设计词向量权重,进而用加权求和的方法得到短文本向量,最后用SVM分类器对短文本做分类训练并且通过微博数据实验验证了该方法的有效性.
2023-03-16 16:35:47 977KB Word2Vec 短文本分类 TF-IDF
1
Python 豆瓣书评 bs4多页爬虫 jieba中文分词 tf-idf向量化 kmeans聚类+统计词频 +停用词 douban图书评价 浏览器多页爬虫 jupyter notebook numpy pandas sklearn 数据分析 数据挖掘
2023-03-09 10:46:03 1.57MB 爬虫 NLP kmeans 数据挖掘
1
情感是音乐最重要的语义信息,音乐情感分类广泛应用于音乐检索,音乐推荐和音乐治疗等领域.传统的音乐情感分类大都是基于音频的,但基于现在的技术水平,很难从音频中提取出语义相关的音频特征.歌词文本中蕴含着一些情感信息,结合歌词进行音乐情感分类可以进一步提高分类性能.本文将面向中文歌词进行研究,构建一部合理的音乐情感词典是歌词情感分析的前提和基础,因此基于Word2Vec构建音乐领域的中文情感词典,并基于情感词加权和词性进行中文音乐情感分析.本文首先以VA情感模型为基础构建情感词表,采用Word2Vec中词语相似度计算的思想扩展情感词表,构建中文音乐情感词典,词典中包含每个词的情感类别和情感权值.然后,依照该词典获取情感词权值,构建基于TF-IDF (Term Frequency-Inverse Document Frequency)和词性的歌词文本的特征向量,最终实现音乐情感分类.实验结果表明所构建的音乐情感词典更适用于音乐领域,同时在构造特征向量时考虑词性的影响也可以提高准确率.
1
Python 58同城房价bs4 beautiful soup爬虫获取 room_name room_type room_area room_addr0 room_addr1 room_price房价名称类型面积地址价格等 jieba中文分词 tf-idf向量化 kmeans聚类 浏览器多页爬虫 jupyter notebook numpy pandas sklearn 数据分析 数据挖掘
2023-02-22 22:22:27 113KB jieba NLP 爬虫 kmeans
1
包括将txt文件的每个字录入并计算出现次数和计算权重的函数,语料库是大约十万字的66篇论文,tfidf.py中是对文章向量化处理和计算夹角的函数,可以用于文章的分类和论文的查重,由于语料库很少,所以可能结果精度不高。
2023-02-09 15:16:59 7.31MB python TFIDF 数学 向量
1