GoEmotions火炬手 使用实现Pytorch实现 什么是GoEmotions 数据集以28种情感标记为58000个Reddit评论 钦佩,娱乐,愤怒,烦恼,批准,关怀,困惑,好奇心,欲望,失望,不赞成,厌恶,尴尬,兴奋,恐惧,感激,悲伤,喜悦,爱,紧张,乐观,骄傲,意识到,缓解,后悔,悲伤,惊喜+中立 训练细节 使用基于bert-base-cased (与论文的代码相同) 在本文中,使用了3种分类法。 我还使用用于分类hierarchical grouping和ekman新分类标签制作了数据。 原始GoEmotions (27种情感+中性) 分层分组(正,负,模棱两可+中性) 艾克曼(愤怒,厌恶,恐惧,喜悦,悲伤,惊奇+中立) 词汇 我已分别将[unused1] , [unused2]替换为[NAME]和[RELIGION] 。 [PAD] [NAME] [RELIGI
1
文本多标签分类-BERT-Tf2.0 该存储库包含针对多标签文本分类的预训练BERT模型的Tensorflow2.0实现。 脚步 从下载数据 借助download_bert.sh下载预训练的模型权重 运行train_bert.py 训练损失和准确性 测试损失和准确性
1
Multi-label-Classification Multi-label attributes Classification and CAM& grad-cam (6.26 晚补充部分)之前一直放着grad-cam没有看懂,现在首先对这一部分做补充。 CAM算法简单而且很好用,但是它修改了原本的网络,对于这个问题,Grad-cam在不修改原网络的情况下也可以实现一样的效果,两者等价的理论推导在论文中有证明。 原理简单理解在这里做个记录: 用输出类别的权重对特征图求梯度,取均值 (14, 14, 512)->( 512,) 后分别乘以特征图的每一层相加得到cam 导向反向传播,用到了注册梯度函数,定义一个新的op类型,只反向传播梯度为正的值。对(14,14,512)求最大值(14,14)后的和对输入求梯度。(6.26 晚补充部分) 训练的分类准确率达到0.8 准确率和loss如图所示:
2022-03-14 11:49:59 834KB Python
1
简介 1、本项目是在tensorflow版本1.14.0的基础上做的训练和测试。 2、本项目为中文的多标签文本分类。 3、欢迎大家联系我 4、albert_small_zh_google对应的百度云下载地址: 链接: 提取码:wuxw 使用方法 1、准备数据 数据格式为:classifier_multi_label_textcnn/data/test_onehot.csv 2、参数设置 参考脚本 hyperparameters.py,直接修改里面的数值即可。 3、训练 python train.py 4、预测 python predict.py 知乎代码解读
1
多标签图像分类 使用集成深度CNN进行多标签图像分类的基准 代码说明 代码已使用PyTorch 0.4进行了测试。 通过取消注释相应的行以进行随机裁剪和混合,可以根据model1代码改编本文中出现的Model2(M2)和model3(M3)。 要使用以下命令运行脚本:python resnet101_model1fc.py 1 512 16(三个参数是试验索引,补丁大小,批处理大小) VOC2007的评估指标与NUS-WIDE和MS-COCO的评估指标略有不同,因为注释中存在“困难的示例”,在评估时会被忽略。 我们使用所有训练数据来训练模型和训练停止的固定标准。 数据 要运行该代码,您可能需要从其官方网站下载三个数据集的图像。 参考 王谦,贾宁,Toby P.Breckon,《使用集成深度CNN进行多标签图像分类的基线》,2019年IEEE国际图像处理会议,台北。 接触
1
pytorch-多标签分类 多标签分类任务的个人实施。 用于danbooru2020数据集中的top-8k标签。 运行main.py进行培训和评估。
2021-12-22 21:02:48 168KB Python
1
cail2019_track2 中国法研杯CAIL2019要素抽取任务第三名方案分享 欢迎大家使用 (修改了一下readme,之前那一版感觉写的太水了。) 这次比赛和前两名差距很大,但是也在此给大家分享一下我所用的方案。 主要的trick包括领域预训练、focal loss、阈值移动、规则匹配以及模型优化、调参。 没有使用模型融合。 效果对比 由于是第一次参赛,很多比赛细节没有做记录,效果对比的分数是我从凭印象在上传历史记录里边找的,可能分数不一致,但是大概就在那个范围,还请见谅。 Model 详情 线上评分 BERT 使用bert_base做多标签分类 69.553 BERT+RCNN+ATT 在BERT后增加RCNN层,并把最大池化换成Attention 70.143 BERT+RCNN+ATT 增加阈值移动 70.809 BERT+RCNN+ATT 增加focal loss 71.1
2021-11-03 12:39:42 4.19MB multi-label-classification bert rcnn focal-loss
1
多标签分类的种类 对于张量流 2/01〜3/01 Dacon Mnist多标签分类3/01〜使用Pos对单词顺序进行分类 3070 rtx tensorflow版本和cuda版本 CUDA 11.0 库德11.0 tf-nightly == 2.5.0.dev20201212 它对我有用 开发设置 视窗:
2021-07-22 10:27:13 697KB JupyterNotebook
1
pytorch-multi-label-classifier 引言 实现的用于多标签分类的分类器。 您可以轻松地train , test多标签分类模型并visualize训练过程。 以下是可视化单标签分类器训练的示例。 如果您有多个属性,则毫无疑问,每个属性的所有损失和准确性曲线将在Web浏览器上有序显示。 失利 准确性 模块 data 数据准备模块,包括读取和转换数据。 所有数据label.txt以某种预定义的格式存储在data.txt和label.txt ,如下所述。 model 脚本来构建多标签分类器模型。 您的模范样板应该放在这里。 options 训练测试和可视化选项在这里定义 util webvisualizer :一个用于可视化的每个属性的损失和准确性基于可视化工具 util :项目中使用的其他功能 html :在webvisualizer中使用。 test mn
1
PyTorch图像模型多标签分类 基于timm的多标签分类。 更新2021/03/22 更新了./timm/models/multi_label_model.py、./train.py和./validate.py,以计算每个标签的精度。 介绍 该存储库用于多标签分类。 该代码基于 。 感谢罗斯的出色工作。 我于2021年2月27日下载了他的代码。 我认为我的多标签分类代码将与他的最新版本兼容,但我没有检查。 该是多标签分类的主要参考资料。 感谢Dmitry Retinskiy和Satya Mallick。 为了理解我们的上下文和数据集,尽管您无需阅读此处的特定代码,但请花5分钟阅读上面的链接。 将所有图像放入./fashion-product-images/images/。 为了实现多标签分类,我从Ross的pytorch-image-models中修改(添加)以下文件: ./
2021-04-19 15:31:46 14.37MB pytorch vgg densenet resnet
1