读Focal Loss for Dense Object Detection这篇论文 做的一个总结讲解ppt
2023-01-10 08:10:50 2.15MB focal loss 类不平衡 ppt
1
通过python脚本构造focal loss曲线;焦点损失函数是重加权的一个典型代表,被广泛应用于目标检测和语义分割。
1
我就废话不多说了,直接上代码吧! import torch import torch.nn.functional as F import numpy as np from torch.autograd import Variable ''' pytorch实现focal loss的两种方式(现在讨论的是基于分割任务) 在计算损失函数的过程中考虑到类别不平衡的问题,假设加上背景类别共有6个类别 ''' def compute_class_weights(histogram): classWeights = np.ones(6, dtype=np.float32) normHist =
2022-05-06 18:55:55 49KB al c cal
1
对于类别不平衡的loss函数
1
cail2019_track2 中国法研杯CAIL2019要素抽取任务第三名方案分享 欢迎大家使用 (修改了一下readme,之前那一版感觉写的太水了。) 这次比赛和前两名差距很大,但是也在此给大家分享一下我所用的方案。 主要的trick包括领域预训练、focal loss、阈值移动、规则匹配以及模型优化、调参。 没有使用模型融合。 效果对比 由于是第一次参赛,很多比赛细节没有做记录,效果对比的分数是我从凭印象在上传历史记录里边找的,可能分数不一致,但是大概就在那个范围,还请见谅。 Model 详情 线上评分 BERT 使用bert_base做多标签分类 69.553 BERT+RCNN+ATT 在BERT后增加RCNN层,并把最大池化换成Attention 70.143 BERT+RCNN+ATT 增加阈值移动 70.809 BERT+RCNN+ATT 增加focal loss 71.1
2021-11-03 12:39:42 4.19MB multi-label-classification bert rcnn focal-loss
1
焦点损失 降低了分类良好的示例的权重。 这样做的净效果是,将更多的培训重点放在难以分类的数据上。 在我们的数据不平衡的实际环境中,由于我们拥有更多的数据,我们的多数阶级将很快得到很好的分类。 因此,为了确保我们在少数族裔班上也能达到很高的准确性,我们可以使用焦点损失在训练过程中为那些少数族裔班级提供更多的相对权重。 焦点损失可以很容易地在Keras中实现为自定义损失函数。 用法 以焦点损失为样本编译模型: 二进位 model.compile(损失= [binary_focal_loss(alpha = .25,gamma = 2)],指标= [“准确性”],优化程序= adam) 分类的 model.compile(损失= [categoical_focal_loss(alpha = [[。25,.25,.25]],gamma = 2)],指标= [“准确性”],优化程序= ad
1
Focal Loss的Pytorch实现及测试完整代码,适合深度学习,计算机视觉的人群
2021-05-22 21:06:49 20KB pytorch 计算机视觉 深度学习 focalloss
1
具有三重态焦点损失的人员重新识别
2021-03-07 09:05:23 945KB Re-identification Triplet Focal Loss
1