项目工程资源经过严格测试可直接运行成功且功能正常的情况才上传,可轻松copy复刻,拿到资料包后可轻松复现出一样的项目,本人系统开发经验充足(全栈开发),有任何使用问题欢迎随时与我联系,我会及时为您解惑,提供帮助 【资源内容】:项目具体内容可查看/点击本页面下方的*资源详情*,包含完整源码+工程文件+说明(若有)等。【若无VIP,此资源可私信获取】 【本人专注IT领域】:有任何使用问题欢迎随时与我联系,我会及时解答,第一时间为您提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 【适合场景】:相关项目设计中,皆可应用在项目开发、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面中 可借鉴此优质项目实现复刻,也可基于此项目来扩展开发出更多功能 #注 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担 2. 部分字体及插图等来自网络,若是侵权请联系删除,本人不对所涉及的版权问题或内容负法律责任。收取的费用仅用于整理和收集资料耗费时间的酬劳 3. 积分资源不提供使用问题指导/解答
2024-11-24 18:14:58 7.92MB
1
在本作业中,我们主要探讨了如何配置IntelliJ IDEA环境以及使用Scala和Apache Spark实现PageRank算法。PageRank是Google早期用于网页排名的核心算法,它通过迭代计算每个网页的重要性,从而提供搜索引擎的搜索结果排序。 首先,我们需要搭建一个win10系统上的开发环境,包括安装Scala、Spark和Hadoop。完成环境搭建后,可以通过访问`http://127.0.0.1:4040/jobs/`来监控Spark作业的运行状态,确保环境配置成功。 接着,我们需要配置IntelliJ IDEA,这是一个强大的Java开发集成环境,也支持Scala等其他编程语言。配置IDEA主要包括安装Scala插件,设置Scala SDK,创建新的Scala项目,并配置Spark相关依赖。这样,我们就可以在IDEA中编写、编译和运行Scala代码。 PageRank算法是基于迭代的过程,它涉及到两个关键数据集:links和ranks。links数据集存储了页面之间的链接关系,例如(A, [B, C, D])表示页面A链接到B、C和D。而ranks数据集则记录了每个页面的PageRank值,初始时所有页面的PageRank值都设为1.0。 PageRank算法的主要步骤如下: 1. 初始化:将每个页面的PageRank值设为1.0。 2. 迭代计算:在每一轮迭代中,每个页面会将其PageRank值按照链接数量平均分配给相连的页面。假设页面p的PageRank值为PR(p),链接数为L(p),则p会给每个相邻页面贡献PR(p)/L(p)的值。 3. 更新PageRank:每个页面的新PageRank值由0.15的“随机跳跃”因子加上接收到的贡献值的0.85倍计算得出。这个公式保证了即使没有被其他页面链接的页面也能获得一定的PageRank值。 4. 迭代直到收敛:算法会重复上述步骤,通常在10轮迭代后,PageRank值会趋于稳定。 在给出的Scala代码中,我们创建了一个SparkConf对象,设置了应用程序名和主节点,然后创建了SparkContext实例。接着,我们使用Spark的parallelize方法创建了一个links的RDD,表示页面间的链接关系。初始ranks RDD中的PageRank值被设为1.0。接下来的for循环进行PageRank迭代计算,使用join、flatMap、reduceByKey等操作处理数据,最后将计算结果保存到"result"文件夹下。 运行结果会被保存在名为"part-000000"的文件中,这是Spark默认的输出格式,包含了每个页面及其对应的PageRank值。在IDEA环境下,可以直接查看这些输出结果,以便分析和验证PageRank算法的正确性。 总之,本作业涵盖了环境配置、Scala编程以及PageRank算法的实现,提供了从理论到实践的完整体验。通过这个过程,我们可以深入理解分布式计算的基本操作,以及PageRank算法如何评估网页的重要性。
2024-06-23 23:10:34 375KB windows scala spark hadoop
1
flink-1.18.0-bin-scala-2.12.tgz
2024-05-02 14:23:55 456.85MB scala flink
1
python+spark 2.0+hadoop 机器学习与大数据实战 第十一章软件安装包,内含scala ide eclipse的scala-SDK-4.4.1-vfinal-2.11-linux.gtk.x86_64.tar.gz安装包和对应的PyDev 4.5.4.zip插件安装包
2024-04-09 00:56:51 242.43MB scala linux PyDev eclipse
1
Scala_中文学习资料_含Scala_2.7.6_API.rar。Scala_中文学习资料_含Scala_2.7.6_API.rar。
2024-02-28 21:42:22 5.1MB scala
1
前 言 大数据学习路线 大数据技术栈思维导图 大数据常用软件安装指南 一、Hadoop 分布式文件存储系统:HDFS 分布式计算框架:MapReduce 集群资源管理器:YARN 单机伪集群环境搭建 集群环境搭建 常用 Shell 命令 Java API 的使用 基于 Zookeeper 搭建 Hadoop 高可用集群 二、Hive 简介及核心概念 Linux 环境下 Hive 的安装部署 CLI 和 Beeline 命令行的基本使用 常用 DDL 操作 分区表和分桶表 视图和索引 常用 DML 操作 数据查询详解 三、Spark Spark Core Spark SQL Spark Streaming 五、Flink 核心概念综述 开发环境搭建 Data Source Data Transformation Data Sink 窗口模型 状态管理与检查点机制 Standalone 集群部署 六、HBase 简介 系统架构及数据结构 基本环境搭建 集群环境搭建 常用 Shell 命令 Java API 过滤器详解 可显示字数有限,详细内容请看资源。
2023-12-20 09:06:41 20.75MB kafka kafka zookeeper zookeeper
1
flink-1.14.5-bin-scala_2.12.tgz
2023-10-28 16:15:31 342.96MB flink
1
flink 安装包 1.15.2(flink-1.15.2-bin-scala_2.12 .tgz)
2023-10-24 09:52:15 416.6MB flink
1
Reactive Messaging Patterns with the Actor Model Applications and Integration in Scala and Akka 英文epub
2023-06-05 09:44:42 18.11MB Reactive Messaging Patterns Scala
1
徐老师大数据培训Hadoop+HBase+ZooKeeper+Spark+Kafka+Scala+Ambari
2023-04-27 21:21:38 49B Hadoop
1