内容概要:本文档是关于《大数据技术原理与应用》实验报告四,主要围绕MapReduce初级编程实践展开。实验目的包括掌握基本的MapReduce编程方法及用其解决常见数据处理问题如数据去重、排序和数据挖掘等。实验平台涉及VMWare虚拟机、Ubuntu、JDK1.8、Hadoop、HBase等。实验内容涵盖编程实现文件合并和去重操作、编写程序实现对输入文件的排序、对给定表格进行信息挖掘,具体展示了各步骤的代码实现细节。文档最后列举了实验过程中遇到的问题及其解决方案,并分享了实验心得,强调了编程在数据处理中的重要性,以及面对数据倾斜、格式不一致等问题时的学习与应对。 适合人群:计算机科学专业学生、大数据技术初学者、对MapReduce编程感兴趣的开发者。 使用场景及目标:①学习MapReduce编程模型的基础知识和技能;②掌握处理大规模数据集的方法,如文件合并去重、整数排序、表格信息挖掘;③理解并解决实验过程中可能出现的各种问题,如Hadoop配置错误、权限不足等;④提升编程能力、数据处理能力和问题解决能力。 阅读建议:本实验报告详细记录了MapReduce编程实践的具体过程,读者应结合实验内容和代码示例进行学习,同时注意参考提供的解决方案以应对可能遇到的问题。建议读者实际动手操作,以加深理解和掌握。
2025-12-14 08:52:27 10.48MB MapReduce Hadoop Java VMWare
1
标题Python基于Hadoop的租房数据分析系统的设计与实现AI更换标题第1章引言介绍租房数据分析的重要性,以及Hadoop和Python在数据分析领域的应用优势。1.1研究背景与意义分析租房市场的现状,说明数据分析在租房市场中的重要作用。1.2国内外研究现状概述Hadoop和Python在数据分析领域的应用现状及发展趋势。1.3论文研究内容与方法阐述论文的研究目标、主要研究内容和所采用的技术方法。第2章相关技术理论详细介绍Hadoop和Python的相关技术理论。2.1Hadoop技术概述解释Hadoop的基本概念、核心组件及其工作原理。2.2Python技术概述阐述Python在数据处理和分析方面的优势及相关库函数。2.3Hadoop与Python的结合应用讨论Hadoop与Python在数据处理和分析中的结合方式及优势。第3章租房数据分析系统设计详细描述基于Hadoop的租房数据分析系统的设计思路和实现方案。3.1系统架构设计给出系统的整体架构设计,包括数据采集、存储、处理和分析等模块。3.2数据采集与预处理介绍数据的来源、采集方式和预处理流程。3.3数据存储与管理阐述数据在Hadoop平台上的存储和管理方式。第4章租房数据分析系统实现详细介绍租房数据分析系统的实现过程,包括关键代码和算法。4.1数据分析算法实现给出数据分析算法的具体实现步骤和关键代码。4.2系统界面设计与实现介绍系统界面的设计思路和实现方法,包括前端和后端的交互方式。4.3系统测试与优化对系统进行测试,发现并解决问题,同时对系统进行优化以提高性能。第5章实验结果与分析对租房数据分析系统进行实验验证,并对实验结果进行详细分析。5.1实验环境与数据集介绍实验所采用的环境和数据集,包括数据来源和规模等。5.2实验方法与步骤给出实验的具体方法和步骤,包括数据预处理、模型训练和测试等。5.3实验结果分析从多
2025-12-06 14:19:54 35.31MB python pycharm django mysql
1
基于Hadoop+Spark招聘推荐可视化系统 大数据项目 毕业设计(源码下载) 基于Hadoop+Spark的招聘推荐可视化系统是一种利用Hadoop和Spark等大数据处理技术,实现招聘推荐和可视化展示的应用系统。以下是该系统的主要介绍: 数据采集:系统通过各种渠道(如招聘网站、社交媒体等)获取大量的招聘相关数据,包括职位信息、公司信息、求职者信息等。这些数据以结构化或半结构化形式存在。 数据存储与处理:系统利用Hadoop分布式文件系统(HDFS)存储采集到的招聘数据,并使用Hadoop生态圈中的工具(如Hive、HBase等)进行数据处理和管理。Spark作为数据处理引擎,提供高性能的批处理和实时计算能力,对招聘数据进行清洗、转换和特征提取等操作。 招聘推荐:系统利用Spark的机器学习库(如MLlib)构建候选模型,通过对求职者的个人资料、工作经历、技能等特征进行分析,匹配合适的职位和公司。系统可以根据用户的偏好和需求,向其推荐最相关的招聘信息。 可视化展示:系统利用可视化工具(如matplotlib、Plotly等)将招聘数据以各种图表、图形等形式可视化展示。例如,
2025-11-23 18:25:05 191.07MB hadoop spark 毕业设计
1
基于大数据技术构建的地铁客流智能分析系统——高效管理与决策支持平台,项目21:基于大数据技术的地铁客流量分析系统 简介: 本项目旨在利用Hadoop和Spark大数据技术,对海量地铁客流量数据进行高效管理和深入分析。 通过构建数据仓库,实现用户登录注册功能,并提供地铁站点数量、站点人数、闸机总客流量等实时查询服务。 项目将进行站点乘客数量漏斗分析,以识别客流流失环节;同时,分析不同站点及线路的流量峰值和占比,为地铁运营提供决策支持。 最终,通过可视化技术展示统计分析结果,为管理者提供直观、易懂的数据展现形式,助力提升地铁运营效率和服务质量。 hadoop+spark+mysql+mybatis+springboot+vue+echarts+hmtl+css ,基于所给信息,提取的核心关键词为: 大数据技术; 地铁客流量分析; Hadoop; Spark; 数据仓库; 实时查询服务; 站点乘客数量漏斗分析; 流量峰值分析; 决策支持; 可视化技术。 关键词以分号分隔为:大数据技术; 地铁客流量分析; Hadoop; Spark; 数据仓库; 实时查询服务; 站点乘客数量漏斗分析;
2025-11-18 23:02:15 495KB
1
基于ambari安装大数据平台,已通过测试,按照文档步骤可以完成安装。
2025-11-12 11:31:09 1.31MB ambari yarn hadoop hive
1
hadoop学习时用到的 测试数据:手机上网日志
2025-11-06 16:20:19 2KB hadoop 测试数据 手机上网日志
1
刚开始学大数据,带我的师兄给了份很好的测试数据,很不错,分享给大家 刚开始学大数据,带我的师兄给了份很好的测试数据,很不错,分享给大家 刚开始学大数据,带我的师兄给了份很好的测试数据,很不错,分享给大家 刚开始学大数据,带我的师兄给了份很好的测试数据,很不错,分享给大家 刚开始学大数据,带我的师兄给了份很好的测试数据,很不错,分享给大家 刚开始学大数据,带我的师兄给了份很好的测试数据,很不错,分享给大家 刚开始学大数据,带我的师兄给了份很好的测试数据,很不错,分享给大家 刚开始学大数据,带我的师兄给了份很好的测试数据,很不错,分享给大家 刚开始学大数据,带我的师兄给了份很好的测试数据,很不错,分享给大家 刚开始学大数据,带我的师兄给了份很好的测试数据,很不错,分享给大家 刚开始学大数据,带我的师兄给了份很好的测试数据,很不错,分享给大家 刚开始学大数据,带我的师兄给了份很好的测试数据,很不错,分享给大家 刚开始学大数据,带我的师兄给了份很好的测试数据,很不错,分享给大家 刚开始学大数据,带我的师兄给了份很好的测试数据,很不错,分享给大家 刚开始学大数据,带我的师兄给了份很好的测试数据,很不错,分享给大家
2025-11-06 16:13:29 31.93MB hadoop 测试数据
1
实验3—Hadoop 完全分布式模式搭建
2025-11-05 00:33:31 835KB hadoop
1
Ubuntu虚拟机HADOOP集群搭建eclipse环境 hadoop-eclipse-plugin-3.3.1.jar
2025-10-28 10:40:27 127.89MB hadoop eclipse java
1
此文件编译总是出现问题,这是已编译好的版本,版本为0.4.21,可以直接使用,现一直在用,没有出现问题。
2025-10-24 15:41:41 176KB hadoop-lzo 已编译文件
1