2.ANSYS高速建模办法 这里所说高速,我个人认为是实实在在的高速建模,这里不采用GUI,不采用APDL,而是采用第三方软件来辅助。 这里的第三方软件就是MIDAS,MIDAS建立空间模型是非常快速的,可以说相同模型,MIDAS可以比ANSYS效率高几倍,越是复杂的桥梁结构越是有它的优越性。MIDAS有一个特点,可以输出MCT文件,这个文件是ANSYS建模的基本文件。 这里要介绍一款程序:CMTA CMTA:CONVERT MIDAS MCT TO ANSYS APDL
2025-09-13 18:59:20 1.73MB ANSYS高速建模方法介绍
1
内容概要:本文探讨了基于管道模型预测控制(TubeMPC)与基于LMI的误差反馈增益,在主动前轮转向(AFS)和稳定性控制(VSC)中的应用。研究通过MATLAB2020b和carsim2020进行仿真,展示了在120km/h车速和0.5附着系数条件下的单移线和双移线实验结果。文中详细介绍了TubeMPC的实现方法、LMI误差反馈增益的作用机制、AFS和VSC的具体应用方式,并提供了完整的仿真流程和结果分析。最终,研究证明了所提出的技术方案能有效提升车辆在高速和复杂路况下的稳定性和轨迹跟踪能力。 适合人群:从事车辆工程、自动控制领域的研究人员和技术人员,尤其是关注车辆稳定性控制和自动驾驶技术的专业人士。 使用场景及目标:适用于希望深入了解车辆稳定性控制技术的研究人员,以及需要评估和改进现有车辆控制系统的工程师。目标是提供一种高效、可靠的车辆控制解决方案,确保车辆在不同驾驶条件下的安全性。 其他说明:本文不仅提供了理论分析,还包括具体的仿真案例和代码实现,便于读者理解和复现研究成果。
2025-09-06 14:45:38 1.1MB
1
在现代电气工程与自动化控制领域中,电机的高效精确控制是核心课题之一。永磁同步电机(Permanent Magnet Synchronous Motor,简称PMSM)由于其高效能、高转矩密度、良好动态响应等特点,在工业自动化、电动交通工具、伺服控制系统中得到了广泛应用。本内容将重点讨论永磁同步电机的几种控制策略,包括变频(VF)控制、恒流频比控制、恒压频比控制,以及利用MATLAB/Simulink软件进行的控制仿真。 VF控制是一种常用的电机控制方法,它通过调整电机供电频率和电压来实现电机速度和转矩的控制。在VF控制中,开环控制多用于对电机速度要求不是很高的场合,而闭环控制则可以实现更精确的速度和位置控制。VF控制策略简单、成本较低,但其控制性能受到电机参数和负载变化的影响较大。 恒流频比控制是指在电机运行过程中保持电流与频率的比例关系不变,以此来控制电机的转矩。由于电机的磁通量与电流成正比,因此保持恒流可以确保电机的磁通量恒定,从而获得稳定的转矩输出。恒流控制适用于对转矩波动有严格要求的场合。 恒压频比控制则是在电机运行过程中保持电压与频率的比例关系恒定。这种方法可以在电机转速变化时维持电机内部磁通量的一致性,从而保证电机效率和功率因数的稳定。恒压频比控制同样适用于要求电机功率输出稳定的场合。 MATLAB/Simulink作为一个强大的数学计算和仿真工具,它提供的控制系统工具箱和电力系统工具箱可以对电机控制系统进行建模和仿真。通过MATLAB/Simulink,我们可以搭建电机控制系统的仿真模型,不仅能够模拟电机在不同控制策略下的动态性能,还能够验证控制算法的可行性,这对于电机控制系统的设计和优化具有重要意义。 仿真可以实现对永磁同步电机在VF开环控制及中高速无传感全速域复合控制策略的模拟。在无传感控制中,电机的速度和位置信息不是通过传感器直接测量得到的,而是通过观测器或估算器来实时计算。无传感控制技术可以减少系统的复杂性和成本,提高系统的可靠性。 上述讨论的控制策略在实际应用中需要根据具体要求来选择合适的控制方式。例如,在对电机效率要求较高的场合,可以采用恒压频比控制;在对转矩精度要求较高的场合,则更适合采用恒流频比控制。而MATLAB/Simulink仿真则为设计人员提供了一个强大的工具,通过仿真实验可以在实际应用之前对电机控制策略进行充分的验证和优化。 以上内容总结了永磁同步电机控制策略的基本概念和MATLAB/Simulink仿真应用的基本方法,旨在为相关领域的工程技术人员提供理论指导和技术参考。通过对这些控制策略的深入理解,可以在电机控制系统的设计和应用中取得更好的效果。
2025-09-03 13:53:40 80KB matlab
1
基于SMIC180nm工艺的10位20MHz SAR ADC设计:完整电路图与仿真文档解析,基于SMIC 180nm工艺的10bit 20MHz SAR ADC设计手册:栅压自举开关、高速动态比较器与DFT还原测试,10bit 20MHZ SAR ADC 设计,smic180nm,有设计文档原理解读 有工艺库,直接导入自己的cadence就能运行,有效位数ENOB为9.8,适合入门SAR ADC 结构: 常用栅压自举开关Bootstrap Vcm_Based开关时序 上级板采样差分CDAC阵列 两级动态比较器 比较器高速异步时钟 动态sar逻辑 10位DFF输出 10位理想DAC还原做DFT。 包括详细仿真文档,原理介绍,完整电路图,仿真参数已设好,可直接使用,在自己的电脑上就可以运行仿真。 适合入门SAR ADC的拿来练手 ,核心关键词: 1. 10bit 20MHZ SAR ADC 设计 2. SMIC180nm 工艺 3. 设计文档原理解读 4. 栅压自举开关Bootstrap 5. Vcm_Based开关时序 6. 上级板采样差分CDAC阵列 7. 两级动态比较器 8. 动态
2025-09-02 15:24:53 380KB gulp
1
FPGA驱动W5500以太网模块:SPI传输80MHz高速TCP客户端源码,支持多Socket与硬件验证优化,FPGA驱动W5500以太网模块:SPI传输达80MHz频率,TCP客户端源码与硬件验证全解析,fpga 以太网w5500 SPI传输80MHz FPGA verilog TCP客户端驱动源码,8个SOCKET都可用,SPI频率80MHZ,硬件验证以通过 。 w5500 ip 核 w5500 软核,还有TCP服务端和UDP模式,联系联系我要那个,默认发TCP客户端。 这个代码是用fpga驱动和使用w5500模块,做过优化,可能以达到w5500最高传输速度,学习必用之良品 ,FPGA; 以太网W5500; SPI传输; 80MHz FPGA; Verilog; TCP客户端驱动源码; 8个SOCKET; SPI频率80MHZ; 硬件验证; W5500 IP核; W5500软核; TCP服务端; UDP模式。 核心关键词:FPGA;以太网W5500;SPI传输;80MHz;Verilog;TCP客户端驱动源码;8个SOCKET;SPI频率;硬件验证;W5500 IP核;W550
2025-09-02 15:08:44 1.57MB 哈希算法
1
如何使用MATLAB实现高速铁路的三维车轨耦合模型。文章从引言开始,阐述了研究背景和重要性,接着概述了车轨耦合模型的基本概念,包括车辆和轨道之间的相互作用。随后,文章深入探讨了MATLAB车轨耦合程序的设计与实现,具体涵盖了车辆模型、轨道模型的设计,以及耦合振动模型的建立。此外,还介绍了如何使用Simulink工具箱构建模型并加入不平顺等激励,以更真实地模拟实际运行环境。通过对仿真的结果分析,能够更好地评估车辆和轨道系统在复杂条件下的动力响应和安全性能。 适合人群:从事高速铁路工程、车辆工程、机械工程等相关领域的研究人员和技术人员,尤其是那些希望深入了解车轨耦合动力学的研究者。 使用场景及目标:适用于需要模拟和分析高速铁路车辆与轨道之间相互作用的研究项目。目标是帮助研究者更全面地评估车辆和轨道系统在不同条件下的动力响应和安全性能,从而提升高速铁路的设计水平和运行安全性。 其他说明:文中提供了详细的建模步骤和方法,对于有MATLAB基础的读者来说,可以直接应用于实际工程项目中。同时,加入了不平顺等激励的仿真部分,使得模型更加贴近实际情况。
2025-08-28 16:35:50 508KB
1
无感FOC电机三相控制高速吹风筒方案详解:高效率、低噪音、低成本,AC220V 80W功率输出,最高转速达20万RPM,支持按键调试,原理图及PCB软件代码齐全。,无感FOC电机三相控制高速吹风筒方案 FU6812L+FD2504S 电压AC220V 功率80W 最高转速20万RPM 方案优势:响应快、效率高、噪声低、成本低 控制方式:三相电机无感FOC 闭环方式:功率闭环,速度闭环 调速接口:按键调试 提供原理图 PCB软件代码 ,关键词: 无感FOC电机; 三相控制; 高速吹风筒; 方案优势; 响应快; 效率高; 噪声低; 成本低; 电压AC220V; 功率80W; 最高转速20万RPM; 控制方式; 功率闭环; 速度闭环; 调速接口; 按键调试; 原理图; PCB软件代码; FU6812L+FD2504S。,基于无感FOC控制的高速吹风筒方案:FU6812L+FD2504S 20万RPM高效低噪风机
2025-08-26 19:47:26 78KB
1
针对航天、雷达、通信等领域的高速数据采集与传输系统中存在采样率低、传输速率不足的问题,设计了一种高速数据采集与光纤传输系统。系统以FPGA为主控芯片,利用8路AD9226采集电路实现高速数据采集,通过基于Aurora协议的两条高速光纤传输链路达到高速数据传输需求,并设计了边沿触发、门控触发以及手动触发,以满足不同应用场合的触发需求。经过大量实验表明,该系统稳定性高、可靠性强、适用范围广,最高采样率为60 MHz,传输速率可达7.68 Gb/s。该系统已成功应用于某型高速数据记录仪中。 高速数据采集与光纤传输系统是现代航天、雷达和通信领域中的关键组成部分,它们对于处理大量实时数据至关重要。传统的数据采集和传输系统往往面临采样率低、传输速率不足的问题,限制了系统的性能和应用范围。为了解决这些问题,本文提出并实现了一种新型的高速数据采集与光纤传输系统。 该系统的核心是FPGA(Field-Programmable Gate Array),选用的是Xilinx公司的Virtex-6 FPGA,它具备高速收发器和多种IP核,特别适合高速数据处理任务。FPGA控制模块负责生成8路A/D采集模块的工作时序,控制可编程时钟电路,执行高速光纤通信,以及解析外部触发信号。 A/D采集模块则采用8片ADI公司的AD9226芯片,这是一种12位、65 MS/s的高速模数转换器。AD9226芯片的电压输入范围是1.0 V至3.0 V,但通过在前端设计衰减电路,可以扩展至-5 V至+5 V,确保更广泛的电压采集范围。8路AD9226采集到的数据,经过编码打包成128位的数据帧,以适应7.68 Gb/s的最高数据速率。 为了实现高速传输,系统采用Aurora协议,这是一种支持流式和帧式传输模式的串行通信协议,可以灵活应对全双工或单工数据通信。Aurora协议的8b/10b编码技术提高了数据传输的效率和可靠性,同时利用FIFO(First In First Out,先进先出)存储器来匹配数据速率和缓存数据,确保数据的准确无误传输。 数字逻辑设计部分包括可编程时钟电路配置、AD9226控制、外部触发模块以及光纤收发模块的控制。可编程时钟电路能够产生不同频率的时钟信号,以适应不同采样率的数据采集需求。外部触发模块允许根据特定条件启动数据采集,增加了系统的灵活性和针对性。 实验结果表明,该系统表现出高稳定性和强可靠性,采样率最高可达60 MHz,传输速率高达7.68 Gb/s,成功应用于高速数据记录仪中。这种高速数据采集与光纤传输系统的创新设计,显著提升了数据处理能力,解决了当前领域中的瓶颈问题,为航天、雷达和通信等行业的数据处理提供了强大的技术支持。
2025-08-09 11:29:27 502KB 高速数据采集
1
2025免费毕业设计附带论文 JAVA+SSM+Vue.js 启动教程: https://www.bilibili.com/video/BV1SzbFe7EGZ/?share_source=copy_web 讲解视频:https://www.bilibili.com/video/BV1Tb421n72S/?share_source=copy_web 二次开发教程:https://www.bilibili.com/video/BV18i421i7Dx/?share_source=copy_web
2025-08-08 19:23:12 53.74MB java vue.js springboot 毕业设计
1
高速公路收费管理系统是在高速公路建设和管理中不可或缺的一部分,它涉及到计算机软件开发的多个方面,包括系统设计、数据库管理、网络通信、用户界面设计等。在本毕业设计中,提出的高速公路收费管理系统,以166SSM(Spring、SpringMVC、MyBatis)为技术框架,全面展示了如何构建一个高速、高效、易于维护的收费管理平台。 该系统以166SSM框架为基础,结合高速公路收费的实际业务需求,通过分层的设计模式,将业务逻辑与表现层分离,从而提高了代码的重用性和系统的可维护性。在数据库设计上,系统采用了关系型数据库管理系统,如MySQL或Oracle,用来存储高速公路收费的各项数据,包括车辆信息、收费记录、账户信息等,为数据的查询和统计提供了强有力的支撑。 在功能实现方面,高速公路收费管理系统通常包含了车辆检测、收费计算、电子支付、票据打印、数据统计等核心模块。其中,车辆检测模块负责快速准确地识别过往车辆信息,并实时记录车辆通行数据。收费计算模块根据车辆类型、通行距离、通行时间等因素动态计算应缴费用。电子支付模块支持多种支付方式,如现金、信用卡、移动支付等,方便快捷地完成交易。票据打印模块在交易完成后打印收费票据,供车主凭证。数据统计模块则负责收集和分析收费数据,为管理和决策提供依据。 在用户体验方面,该系统注重界面友好性和操作便捷性,使工作人员能够快速上手,减少操作错误,提高工作效率。同时,系统还具备良好的扩展性和兼容性,可以适应未来高速公路业务的发展和技术的更新。 系统安全性是高速公路收费管理系统设计中不可忽视的一环。设计时要考虑到数据安全和网络安全两方面。数据安全措施包括对敏感数据加密存储、定期备份、操作日志记录等,确保数据不会因意外丢失或被非法访问。网络安全措施包括部署防火墙、实施访问控制、定期进行安全扫描和漏洞修补等,保障系统不受外部攻击。 从技术角度来看,166SSM框架的使用对系统的性能和稳定性有显著提升。Spring框架作为系统的基础,负责依赖注入和事务管理,简化了企业级应用的开发;SpringMVC作为表示层框架,有效地处理了HTTP请求和响应,实现了前后端的分离;MyBatis作为数据持久层框架,优化了数据库操作的性能,使得数据访问更加灵活和高效。 在实施该系统时,还需要对高速公路现场的硬件设备进行合理布局和配置,比如安装车牌识别系统、设置专用的服务器和工作站等,确保系统的流畅运行。此外,系统还需要定期进行维护和更新,以适应不断变化的政策法规和业务需求。 毕业设计-166SSM高速公路收费管理系统的设计和实现,不仅为高速公路管理提供了一套完善的解决方案,同时也展示了如何利用现代软件开发技术,来应对复杂的业务需求。该系统具备高效性、稳定性和安全性,是未来高速公路收费管理信息化的重要方向。
2025-08-08 19:21:44 49.94MB
1