内容概要:本文介绍了Flow3d11.2软件在激光送粉增材制造FDM(熔融沉积建模)和激光熔覆技术中的应用。Flow3d11.2作为一款先进的流体流动模拟和优化软件,在这两种技术中发挥了重要作用。它可以精确模拟粉末的流动路径和速度,控制激光和粉末的相互作用,从而优化制造过程,提高产品精度和生产效率。文中还提供了使用Flow3d11.2进行模拟的Python代码示例,展示了从创建模拟环境到输出和分析模拟结果的具体步骤。此外,激光熔覆技术可以通过Flow3d11.2有效模拟和控制温度场和材料流动,提升熔覆质量和效率。 适合人群:对激光技术和增材制造感兴趣的工程师和技术人员,尤其是从事相关研究和开发工作的专业人士。 使用场景及目标:适用于希望深入了解激光送粉增材制造FDM和激光熔覆技术的工作原理及其优化方法的人群。目标是掌握如何利用Flow3d11.2软件来改进制造过程,提高产品质量和生产效率。 其他说明:文章强调了Flow3d11.2在复杂制造环境中的重要性和优势,同时展望了这些技术在未来制造业发展中的潜力。
2025-11-26 09:26:45 776KB
1
本文详细介绍了激光雷达与相机融合的技术实现,包括激光雷达点云俯视图提取和点云投影到图像上的方法。第一部分通过OpenCV库将激光雷达点云投影到俯视图平面,并利用颜色表示距离远近,同时简单滤除地面点云。第二部分涉及激光雷达到相机的坐标转换,包括外参矩阵和内参矩阵的应用,以及如何将点云投影到图像平面上。文章提供了完整的代码实现和注释,并附有数据包下载链接,方便读者实践。此外,还介绍了编译和运行代码的步骤,确保读者能够顺利复现实验结果。 激光雷达技术是一种利用激光束测量目标距离的先进传感技术,它的核心部件是激光发射器和接收器,通过发射激光束并接收反射回来的激光,可以测量出物体与激光雷达之间的距离。这种技术广泛应用于无人驾驶汽车、机器人导航、地形测绘等领域。 相机作为一种图像采集设备,能够记录场景的视觉信息。其捕获的图像包含了丰富的颜色、纹理信息,是理解场景语义的重要数据源。在多传感器融合领域,相机与激光雷达的结合可以互补两种传感器的信息不足,以提供更为全面的环境感知能力。 在激光雷达与相机的融合技术中,点云俯视图的提取是一个重要环节。点云数据包含了激光雷达扫描到的环境中的三维坐标点,将这些点云数据映射到俯视图上,可以用二维图像的形式展示出环境的三维结构信息。通过这种方法,可以直观地观察到场景中物体的形状和布局。 点云投影到图像平面是另一个关键步骤。这涉及到坐标转换的问题,即将点云数据从激光雷达的坐标系变换到相机的坐标系下,这样就可以将点云数据与相机捕获的图像对齐。在此过程中,外参矩阵描述了相机与激光雷达之间的相对位置关系,而内参矩阵则与单个传感器的成像特性相关。通过准确的坐标转换,点云数据可以被映射到对应相机拍摄的图像上,从而实现了对环境的精确感知。 OpenCV是一个开源的计算机视觉库,提供了大量图像处理和计算机视觉方面的功能。在这项技术实现中,OpenCV被用于实现点云数据的处理和点云与图像的融合。通过使用OpenCV库,可以方便地进行颜色映射和地面点云的滤除,使得点云数据更加清晰和易于理解。 为了帮助读者更好地理解和实践上述技术,本文提供了可运行的源码以及详尽的代码注释。此外,还提供了数据包下载链接,使读者能够直接获取到相关的数据集,并进行相应的实验操作。在文章中,还详细介绍了如何编译和运行代码,确保读者能够顺利地复现实验结果,并在此基础上进一步开发和创新。 激光雷达与相机融合技术是一种结合了激光雷达点云处理能力和相机图像处理能力的方法,通过OpenCV库实现了点云俯视图提取、点云与图像的对齐投影,并通过源码分享和操作指导,为相关领域的研究人员和工程师提供了实用的参考和学习材料。
2025-11-20 10:05:56 163KB OpenCV 点云处理
1
基于多需求与冷链物流的车辆路径优化算法研究:融合遗传算法与多种智能优化技术,路径规划vrp,遗传算法车辆路径优化vrptw,MATLAB,带时间窗及其他各类需求均可,基于车辆的带时间窗的车辆路径优化VRPTW问题。 冷链物流车辆路径优化,考虑充电桩车辆路径evrp,多配送中心车辆路径优化,冷链物流车辆路径。 改进遗传算法车辆路径优化,蚁群算法粒子群算法,节约算法,模拟 火算法车辆路径优化。 完整代码注释 ,关键词: 1. 路径规划VRP 2. 遗传算法 3. 车辆路径优化VRPTW 4. MATLAB 5. 带时间窗 6. 各类需求 7. 冷链物流 8. 充电桩车辆路径evrp 9. 多配送中心 10. 改进遗传算法 11. 蚁群算法 12. 粒子群算法 13. 节约算法 14. 模拟退火算法 15. 完整代码注释 用分号分隔每个关键词为:路径规划VRP;遗传算法;车辆路径优化VRPTW;MATLAB;带时间窗;各类需求;冷链物流;充电桩车辆路径evrp;多配送中心;改进遗传算法;蚁群算法;粒子群算法;节约算法;模拟退火算法;完整代码注释;,基于多需求与冷链物流的车辆路径优化算法研究
2025-11-16 10:22:54 1.17MB csrf
1
内容概要:该文档是一份基于Google Earth Engine(GEE)平台的完整遥感数据分析脚本,旨在通过多源遥感数据(Sentinel-2光学影像、Sentinel-1 SAR数据、Copernicus DEM地形数据、GEDI激光雷达生物量与树冠高度产品)估算越南嘉莱省(Gia Lai)的地上生物量(AGB)。脚本系统地实现了数据预处理、特征提取、随机森林回归模型构建与验证、生物量空间制图及总量估算,并进一步评估了各预测变量的重要性,最后将结果导出为资产和CSV报告。整个流程涵盖了从原始数据清洗、云掩膜、指数计算、投影统一、重采样到建模分析与结果可视化的全过程。; 适合人群:具备一定遥感与地理信息系统(GIS)基础,熟悉Google Earth Engine平台操作,从事生态环境、林业碳汇或定量遥感研究的科研人员或研究生。; 使用场景及目标:① 学习如何在GEE中融合多源遥感数据进行生物量反演;② 掌握机器学习(如随机森林)在遥感制图中的应用流程;③ 实现区域尺度地上生物量的空间分布制图与总量统计;④ 分析不同遥感特征对生物量估算的贡献度。; 阅读建议:此资源以实际可运行的JavaScript代码形式呈现,建议结合GEE代码编辑器逐步执行并理解每一步的数据流与参数设置,重点关注数据预处理的一致性、模型训练样本的生成方式以及结果导出路径的配置。
2025-11-12 21:19:43 39KB Google Earth Engine Remote
1
内容概要:本文系统阐述了基于ROS2的智能机器人导航系统的设计与实现,重点围绕ROS2的核心特性(如DDS通信、生命周期管理)展开,结合SLAM、多传感器融合、路径规划与动态避障等关键技术,构建完整的自主导航解决方案。通过Python和C++代码示例,详细展示了传感器数据同步、地图加载、代价地图配置及局部规划避障的实现流程,并依托Nav2导航栈完成从环境感知到路径执行的闭环控制。同时探讨了该系统在仓储物流、服务机器人和工业巡检等场景的应用前景,并展望了ROS2与边缘计算、5G及AI深度融合的发展趋势。; 适合人群:具备ROS基础、熟悉Linux与C++/Python编程,从事机器人软件开发或导航算法研究的工程师及科研人员;适合有一定项目经验的技术人员深入学习。; 使用场景及目标:①掌握ROS2在实际导航系统中的架构设计与节点通信机制;②理解多传感器融合与动态避障的实现方法;③应用于AGV、服务机器人等产品的导航模块开发与优化; 阅读建议:建议结合ROS2实际开发环境动手实践文中代码,重点关注生命周期节点管理和QoS配置,同时扩展学习Nav2的插件化机制与仿真测试工具(如RViz、Gazebo)。
1
在本研究中,提出了一个基于长短期记忆网络(LSTM)和Transformer模型融合的新型通信噪音时序预测模型。该模型的提出主要是为了解决通信系统中噪音预测的难题,通过将两种深度学习架构的优势进行整合,旨在提升噪音时序数据的预测准确度。 LSTM网络以其在处理时序数据方面的出色性能而广受欢迎。LSTM能够捕捉序列数据中的长期依赖关系,这对于噪音预测来说至关重要,因为通信信号的噪音往往具有复杂且连续的时间特性。LSTM通过其特有的门控机制(输入门、遗忘门和输出门)有效地解决了传统循环神经网络(RNN)在长序列学习上的梯度消失和梯度爆炸问题,进而能够更加精确地建模和预测噪音变化。 而Transformer模型则代表了另一种处理序列数据的先进技术。它首次由Vaswani等人提出,完全摒弃了传统的递归结构,转而采用自注意力(self-attention)机制来处理序列数据。这种机制使得模型可以并行处理序列中的任意两个位置,极大提升了计算效率,并且增强了对序列中全局依赖关系的捕捉能力。Transformer的这种处理方式,为噪音时序数据的特征提取提供了新的可能性,尤其是对于那些需要理解全局上下文信息的复杂噪声场景。 研究将LSTM的时序依赖捕捉能力和Transformer的全局特征提取能力进行了有效的融合。在这种融合架构下,模型不仅能够保持对序列长期依赖的学习,还能够并行地处理和提取序列中的全局特征,从而提高了噪音预测模型的鲁棒性和准确性。在进行多模型性能评估时,该融合模型展现出优异的性能,明显优于单独使用LSTM或Transformer模型的预测结果。 此外,研究还涉及了多模型性能评估,对融合模型和其他主流的深度学习模型进行了比较分析。通过一系列实验验证了融合模型在各种评估指标上的优越性,如均方误差(MSE)、平均绝对误差(MAE)和决定系数(R^2)等。这些评估结果进一步证实了模型融合策略的有效性,为通信系统中的噪音预测问题提供了一个可靠的技术方案。 在通信信号处理领域,噪音是一个长期存在的挑战,它会严重影响信号的传输质量和通信的可靠性。准确预测通信信号中的噪音变化对于提前采取措施减轻干扰具有重要意义。本研究提出的基于LSTM与Transformer融合架构的通信噪音时序预测模型,在这一领域展示了巨大的潜力和应用价值。 本研究工作不仅在技术上实现了LSTM和Transformer的深度融合,而且在实际应用中展示了通过融合模型优化提升通信系统性能的可能。这项研究工作为通信噪音预测问题提供了一个新颖的解决方案,并且对于其他需要处理复杂时序数据预测任务的领域也具有重要的参考价值。
2025-11-04 18:56:10 64KB
1
内容概要:本文档详细介绍了星网锐捷IPPBX SU8300和SU8600的开局教程,涵盖设备介绍、组网方案、基本配置流程、高级功能配置及基本维护等内容。文档首先概述了IPPBX设备的基本信息及其硬件构成,接着描述了两种典型组网方案——单点和多分支组网。随后,详细讲解了从连接设备到验证配置的基本配置流程,包括设置电脑IP、登录WEB、配置设备IP、添加分机和中继等步骤。高级功能配置部分则涵盖了自动话务员、振铃组、呼叫队列、呼叫转接、一号通及各种前转业务等功能的具体配置方法。最后,简要介绍了基本维护操作,如查看系统信息、恢复出厂设置和备份配置文件。 适合人群:适用于具有基础通信网络知识的技术人员,特别是负责IPPBX设备安装、配置和维护的IT管理员或工程师。 使用场景及目标:①帮助技术人员快速掌握星网锐捷IPPBX SU8300和SU8600的配置和管理技能;②确保设备能够顺利集成到现有的通信网络中,提供稳定可靠的语音通信服务;③通过配置高级功能提升系统的灵活性和用户体验。 其他说明:文档提供了详细的图文指导,便于用户按照步骤操作。此外,还提供了官方联系方式和技术支持渠道,方便用户在遇到问题时寻求帮助。
2025-11-04 08:11:52 7.47MB IPPBX 组网方案 配置流程 电话系统
1
1.本项目基于网络开源平台Face++ . API,与Python 网络爬虫技术相结合,实现自动爬取匹配脸型的发型模板作为造型参考,找到最适合用户的发型。项目结合了人脸分析和网络爬虫技术,为用户提供了一个个性化的发型推荐系统。用户可以根据他们的脸型和偏好来寻找最适合的发型,从而更好地满足他们的美容需求。这种项目在美容和时尚领域具有广泛的应用潜力。 2.项目运行环境:包括 Python 环境和Pycharm环境。 3.项目包括4个模块: Face++ . API调用、数据爬取、模型构建、用户界面设计。Face++ . API可检测并定位图片中的人脸,返回高精度的人脸框坐标,只要注册便可获取试用版的API Key,方便调用;通过Selenium+Chrome无头浏览器形式自动滚动爬取网络图片,通过Face++性别识别与脸型检测筛选出用发型模板,图片自动存储指定位置并按性别、脸型序号形式命名。模型构建包括库函数调用、模拟用户面部图片并设定路径、人脸融合。 4.项目博客:https://blog.csdn.net/qq_31136513/article/details/132868949
2025-10-31 14:12:44 112.24MB face++ 图像识别 图像处理 人脸识别
1
内容概要:本文介绍了在结构动力学和地震工程领域,基于改进的Bouc-Wen模型(BWBN模型)和粒子群优化算法(PSO)的参数识别方法。BWBN模型在原有基础上增加了材料退化和捏缩效应的模拟,能够更精确地描述结构在循环荷载下的非线性行为。文中详细阐述了模型的扩展部分,包括材料退化和捏缩效应的具体实现方式,以及支持的拟静力和地震动输入形式。此外,采用PSO算法进行参数反演识别,通过最小化响应结果与实际观测结果之间的误差来优化模型参数。最后,文章展示了如何在Matlab中实现整个流程,包括模型构建、参数初始化、PSO算法实现和参数反演识别等模块。 适合人群:从事结构动力学、地震工程及相关领域的研究人员和技术人员,尤其是对非线性结构行为和抗震性能有研究兴趣的专业人士。 使用场景及目标:适用于需要模拟结构在循环荷载作用下的非线性行为,特别是涉及材料退化和捏缩效应的情况。目标是提高对结构非线性行为的理解,为抗震设计提供科学依据。 其他说明:该方法不仅有助于学术研究,还可以应用于实际工程项目中,帮助工程师更好地评估和预测建筑物或其他结构在地震等极端条件下的表现。
2025-10-29 10:08:37 2.15MB
1
HiFormer:基于CNN和Transformer的医学图像分割方法 HiFormer是一种新颖的医学图像分割方法,它将卷积神经网络(CNN)和Transformer结合,以解决医学图像分割任务中存在的挑战性问题。该方法通过设计了两个多尺度特征表示使用的开创性Swin Transformer模块和基于CNN的编码器,来确保从上述两种表示中获得的全局和局部特征的精细融合。实验结果表明,HiFormer在计算复杂度、定量和定性结果方面优于其他基于CNN、基于变换器和混合方法的有效性。 医学图像分割是计算机视觉中的主要挑战之一,它提供了有关详细解剖所需区域的有价值的信息。这些信息可以极大地帮助医生描述损伤、监测疾病进展和评估适当治疗的需求。随着医学图像分析的日益使用,高精度和鲁棒性的分割变得越来越重要。 卷积神经网络(CNN)具有提取图像特征的能力,已被广泛用于不同的图像分割任务。然而,CNN模型在医学图像分割任务中的性能受到限制,因为它们只能在局部范围内捕获特征,而忽视了长距离依赖关系和全局上下文。 Transformer最初是为了解决这个问题而开发的,但它们无法捕获低级功能。与此相反,它表明,局部和全局功能是至关重要的密集预测,如分割在具有挑战性的上下文中。在本文中,我们提出了HiFormer,这是一种有效地桥接CNN和Transformer用于医学图像分割的新方法。 具体来说,我们设计了两个多尺度特征表示使用的开创性Swin Transformer模块和基于CNN的编码器。为了确保从上述两种表示中获得的全局和局部特征的精细融合。实验结果表明,HiFormer在计算复杂度、定量和定性结果方面优于其他基于CNN、基于变换器和混合方法的有效性。 在近期的研究中,已经开发了一些基于Transformer的方法来解决CNN在医学图像分割任务中的限制。例如,DeiT提出了一种有效的知识蒸馏训练方案,以克服视觉变换器需要大量数据来学习的困难。Swin Transformer和pyramid visionTransformer试图分别通过利用基于窗口的注意力和空间减少注意力来降低视觉变换器的计算复杂度。CrossViT提出了一种新颖的双分支Transformer架构,可提取多尺度上下文信息,并为图像分类提供更细粒度的特征表述。DS-TransUNet提出了一种双分支Swin Transformer,用于在编码器中捕获不同的语义尺度信息,以执行医学图像分割任务。HRViT将多分支高分辨率架构与视觉变换器连接起来,用于语义分割。 然而,这些方法有一些障碍,阻止他们获得更高的性能:1)它们不能在保持特征一致性的同时,捕获全局和局部特征;2)它们需要大量的数据来学习和训练。因此,我们提出了HiFormer,以解决这些问题,并提供了一种更好的医学图像分割方法。 在实验部分,我们在多个医学图像分割数据集上进行了实验,结果表明,HiFormer在计算复杂度、定量和定性结果方面优于其他基于CNN、基于变换器和混合方法的有效性。我们的代码在GitHub上公开,供其他研究者使用和改进。
1