[{"title":"( 12 个子文件 64KB ) 基于LSTM与Transformer融合架构的通信噪音时序预测模型对比研究_长短期记忆网络_注意力机制_深度学习_多模型性能评估_时序依赖捕捉_全局特征提取_融合模型优化_通信信号.zip","children":[{"title":"communication_noise_prediction-main","children":[{"title":"core","children":[{"title":"train_lstm_gru.py <span style='color:#111;'> 15.20KB </span>","children":null,"spread":false},{"title":"predict_lstm.py <span style='color:#111;'> 5.42KB </span>","children":null,"spread":false},{"title":"train_lstm_transformer.py <span style='color:#111;'> 14.19KB </span>","children":null,"spread":false},{"title":"predict_lstm_transformer.py <span style='color:#111;'> 9.31KB </span>","children":null,"spread":false},{"title":"predict_lstm_parallel.py <span style='color:#111;'> 8.29KB </span>","children":null,"spread":false},{"title":"train_lstm_parallel.py <span style='color:#111;'> 13.75KB </span>","children":null,"spread":false},{"title":"predict_lstm_gru.py <span style='color:#111;'> 9.29KB </span>","children":null,"spread":false},{"title":"train_lstm.py <span style='color:#111;'> 12.30KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 279B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 645B </span>","children":null,"spread":false}],"spread":true},{"title":"说明文件.txt <span style='color:#111;'> 540B </span>","children":null,"spread":false},{"title":"附赠资源.docx <span style='color:#111;'> 42.14KB </span>","children":null,"spread":false}],"spread":true}]