OpenScenario场景仿真结构思维导图, OpenScenario是 自动驾驶仿真软件carla推出来的场景仿真标准,可配合carla一起完成整套自动驾驶的闭环仿真过程,将场景搭建变成可编程化的方式。 可以模拟出自动驾驶真实环境中出现的各种各样的路况环境,例如:被动超车场景、跟车变道场景、换道场景等等。 该思维导图是我们两位自动驾驶仿真工程师耗时一个多月整理出来的。 倘若您具备Openscenario 场景编辑的基础,但是又觉得很多场景无法进行编辑复现,那么该思维导图将是您进行关键词查阅的极佳助手。 倘若您还没接触过Openscenario场景搭建,那么您可以用vscode打开我给您准备的follow_stop_and_run.xosc 这是跟车停止又加油前进的场景,对着这个场景内部的关键字,结合思维导图就能理解自动驾驶虚拟仿真原来是这么搭建出来的了。 倘若您还想动手实时观察场景搭建的效果,请您关注我们的另一个项目,OpenScenario场景仿真搭建。
2024-08-26 17:17:29 735KB 自动驾驶
1
ISO 34502-2022 道路车辆 - 自动驾驶系统的测试场景 - 基于场景的安全评估框架(中文版)
2024-08-23 16:18:18 8.2MB 自动驾驶
1
自动驾驶技术入门书籍系列一:清华大学著作
2024-08-14 15:16:24 94.58MB 自动驾驶
1
一款轻量而功能强大的点云可视化和编辑软件,支持pcd, ply, las等多种格式,轻松打开海量点云数据,支持多方式多字段渲染点云,对点进行方便的查询、量测和编辑,提供了地面滤波算法,可应用于测绘、高精地图、SLAM等领域。
2024-08-09 14:50:25 17.13MB 可视化 PointCloud 自动驾驶
1
自动驾驶领域,360环视全景拼接技术是一项至关重要的功能,它为车辆提供了全方位的视觉感知,有助于提升行车安全。"360环视全景拼接demo,c++程序"是一个展示如何实现这一技术的代码示例,主要用于帮助开发者理解和实践相关算法。 我们来探讨360环视全景拼接的基本概念。这项技术通过安装在车辆四周的多个摄像头捕捉图像,然后利用图像处理和计算机视觉算法将这些图像进行校正、拼接,形成一个无缝的鸟瞰图。这样,驾驶员可以清晰地看到车辆周围的环境,包括盲区,有效减少碰撞风险。 在这个"C++程序"中,我们可以预期包含以下几个关键部分: 1. **摄像头校正**:由于摄像头安装位置、角度和畸变的影响,捕获的图像需要先进行校正。这通常涉及到鱼眼镜头校正,通过霍夫变换等方法消除镜头引起的非线性失真。 2. **图像配准**:将不同摄像头捕获的图像对齐,确保在同一个坐标系下。这一步可能涉及到特征点匹配、刚性变换估计等技术。 3. **图像拼接**:使用图像融合算法,如权重平均或基于内容的融合,将校正后的图像无缝拼接成全景图。这一步要求处理好图像间的过渡区域,避免出现明显的接缝。 4. **实时处理**:在自动驾驶环境中,360环视系统必须实时工作,因此代码会优化算法以满足实时性需求,可能涉及多线程、GPU加速等技术。 5. **用户界面**:展示全景图像的界面设计,包括交互方式、视角切换、显示质量等,对于用户体验至关重要。 6. **标定过程**:摄像头的内在参数(如焦距、主点坐标)和外在参数(如安装位置、角度)的标定,是确保图像拼接准确的基础。 这个"AdasSourrondView-main"可能是项目的主要源代码目录,里面可能包含了上述各个模块的实现,以及相关的配置文件和测试数据。开发者可以通过阅读源码、编译运行,理解并学习360环视全景拼接的完整流程。 在实际应用中,除了基本的图像处理技术,360环视系统还可能整合深度学习算法,用于目标检测、障碍物识别等高级功能,以提供更全面的驾驶辅助。同时,为了应对各种复杂的环境条件,如光照变化、雨雪天气等,系统还需要具备一定的鲁棒性。 "360环视全景拼接demo,c++程序"是一个宝贵的教育资源,它揭示了自动驾驶领域中360度视觉感知的核心技术,并提供了一个动手实践的平台。通过深入研究这个示例,开发者可以增强自己在自动驾驶辅助系统(AVM)领域的专业能力。
2024-08-02 16:44:22 12.24MB 自动驾驶
1
一种应用于多车队列控制的分布式模型预测控制算法,该算法能够有效地协调三辆车的行驶,以实现车队的高效和安全行驶。文中详细阐述了算法的原理、实现步骤以及在实际场景中的应用效果。适用于对自动驾驶技术和车辆控制系统感兴趣的工程师、研究人员和学生。使用场景包括但不限于自动驾驶车辆的研发、智能交通系统的构建以及车辆控制算法的教学和研究。目标是提供一个有效的解决方案,以提高多车队列在复杂交通环境中的稳定性和协同性。 关键词标签:分布式控制 模型预测控制 多车队列 自动驾驶
1
matlab余玄函数代码规划知悉的轨迹预测(PiP) 正式实施“”(ECCV 2020), 由,,和。 在新颖的计划-预测-耦合管道中,将自我车辆的计划告知多主体未来的预测。 有关更多详细信息,请参阅我们的/ /。 依存关系 conda create -n PIPrediction python=3.7 source activate PIPrediction conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch conda install tensorboard=1.14.0 conda install numpy=1.16 scipy=1.4 h5py=2.10 future 下载 原始数据集:下载,然后使用预处理将其处理为所需格式(.mat)。 处理后的数据集:从此处下载并将其保存在datasets /中。 训练有素的模型:从这里下载并保存在trained_models /中。 跑步 通过sh scripts/train.sh训练或运行 python train.py --name
2024-07-31 11:57:59 225KB 系统开源
1
智能网联汽车是车联网与智能汽车的交集,也是智能处理技术与高速网络通信技术的深度融合,国内初期的智能网联大多是基于V2X协同通信的智能交通应用,在美国,他们管它叫网联汽车,欧洲称之为协作式智能交通,日本叫网联驾驶,虽说法不一,但大体一致。
2024-06-25 15:06:30 16KB 自动驾驶
1
Dense 强化学习在自动驾驶安全验证中的应用 Dense 强化学习是一种基于人工智能的技术,旨在加速自动驾驶汽车的安全验证过程。传统的安全验证方法需要在自然istic驾驶环境中对自动驾驶汽车进行测试,这些测试需要大量的时间和经济投入。为了解决这个问题,研究人员开发了一种智能测试环境,使用基于 Dense 强化学习的背景代理来验证自动驾驶汽车的安全性能。 Dense 强化学习是一种基于深度强化学习的方法,通过编辑马尔科夫决策过程,删除非安全关键状态,重新连接关键状态,以便从自然istic驾驶数据中获取紧凑的信息。这种方法可以使神经网络从紧凑的信息中学习,实现了传统深度强化学习方法无法实现的任务。 在本研究中,研究人员使用 Dense 强化学习方法训练背景代理,来模拟自然istic驾驶环境中的安全关键事件。然后,他们使用高度自动化的测试车辆在高速公路和城市测试轨道上进行测试,结果表明,Dense 强化学习方法可以将评估过程加速多个数量级(10^3 到 10^5 倍)。 该方法的应用前景非常广阔,不仅可以用于自动驾驶汽车的安全验证,还可以用于其他安全关键的自动系统的测试和培训。随着自动驾驶技术的快速发展,我们正处于交通革命的前沿,这项技术将大大推动自动驾驶技术的发展。 知识点: 1. Dense 强化学习是一种基于深度强化学习的方法,用于加速自动驾驶汽车的安全验证过程。 2. 传统的安全验证方法需要在自然istic驾驶环境中对自动驾驶汽车进行测试,这些测试需要大量的时间和经济投入。 3. Dense 强化学习方法可以通过编辑马尔科夫决策过程,删除非安全关键状态,重新连接关键状态,以便从自然istic驾驶数据中获取紧凑的信息。 4. 该方法可以使神经网络从紧凑的信息中学习,实现了传统深度强化学习方法无法实现的任务。 5. 该方法可以用于自动驾驶汽车的安全验证,也可以用于其他安全关键的自动系统的测试和培训。 6. 该方法可以加速自动驾驶汽车的安全验证过程,达到多个数量级的加速效果。 7. 该方法的应用前景非常广阔,随着自动驾驶技术的快速发展,将大大推动自动驾驶技术的发展。 Dense 强化学习是一种基于人工智能的技术,旨在加速自动驾驶汽车的安全验证过程。其应用前景非常广阔,将大大推动自动驾驶技术的发展。
2024-06-24 10:34:58 3.19MB 自动驾驶仿真
1
首先,对面向高速公路自动驾驶决策的深度强化学习算法进行改进。分别 针对当前常用于自动驾驶决策的两种深度强化学习算法深度确定性策略梯度 (Deep Deterministic Policy Gradient,DDPG)和近端策略优化(Proximal Policy Optimization,PPO)进行改进,以使其更能满足高速公路自动驾驶场景 对于决策模块的要求。对于DDPG算法,本文对其进行针对性改进提出了基 于双评论家及优先回放机制的深度确定性策略梯度算法(Double Critic and Priority Experience Replay Deep Deterministic Policy Gradient,DCPER-DDPG)。 针对Q值过估计导致的驾驶策略效果下降问题,采用了双评论家网络进行优 化。针对演员网络更新时产生的时间差分误差导致算法模型不精准采用延迟更 新方法降低这一影响。针对DDPG算法中随机经验回放导致的采样样本效果 不符合预期和训练速度慢导致的算力和资源损耗,本文采用优先经验回放机制 对其进行改善。
2024-05-29 00:26:53 37.1MB 自动驾驶 强化学习 高速公路 决策规划
1