随着智能交通系统的发展,自动驾驶技术成为研究热点,而3D多目标追踪是其中的关键技术之一。研究者们致力于开发高效准确的追踪算法,以实现在复杂交通场景下对多个动态目标的实时定位与追踪。时序预测和多模态融合技术为解决自动驾驶中的3D多目标追踪问题提供了新思路。 时序预测技术主要利用时间维度上的信息,通过算法预测目标在未来某时刻的状态,这在动态变化的交通环境中尤为重要。例如,通过对车辆运动轨迹的预测,追踪算法可以提前预知车辆可能的运动趋势,从而做出更准确的追踪判断。时序预测通常依赖于历史数据,结合数学模型,如隐马尔可夫模型、卡尔曼滤波器等,以进行状态估计和预测。 多模态融合则是指结合不同传感器的数据进行信息融合处理。在自动驾驶领域,常见的传感器有摄像头、激光雷达(LiDAR)、毫米波雷达等。每种传感器都有其独特的优点和局限性,例如,摄像头在色彩信息丰富度上有优势,而激光雷达在距离测量和三维空间定位上更为准确。多模态融合技术的目的是利用各传感器的优势,通过算法整合不同源的数据,以提高系统的整体性能和鲁棒性。 本研究聚焦于如何将时序预测与多模态融合相结合,应用于自动驾驶场景中的3D多目标追踪。具体来说,研究可能涉及以下几个方面: 1. 传感器数据融合:收集来自不同传感器的数据,如摄像头图像、激光雷达点云数据和毫米波雷达测量值,并将它们融合成统一的多维数据表示。 2. 特征提取与融合:从融合后的多维数据中提取关键特征,如目标的位置、速度、加速度等,并研究如何有效融合这些特征以提高追踪准确性。 3. 目标检测与识别:开发能够准确检测和识别多目标的算法,解决遮挡、光照变化等问题,并提升在复杂交通场景下的适应能力。 4. 时序预测模型:建立适用于自动驾驶3D多目标追踪的时序预测模型,例如循环神经网络(RNN)和长短期记忆网络(LSTM),用于预测目标的运动轨迹和状态。 5. 追踪算法:设计和实现针对3D多目标追踪的算法,该算法能够利用时序预测和多模态融合的结果进行实时追踪,并在必要时进行交互式校正。 6. 系统实现与评估:将研究的追踪算法实现在自动驾驶系统中,并通过大量的真实场景数据进行测试,以评估算法的性能和实用性。 该研究不仅为自动驾驶技术的发展提供了理论支持和技术保障,而且对于提高交通安全、缓解交通拥堵、促进智能交通系统的实现具有重要的实际意义。未来,随着传感器技术的进步和算法的优化,3D多目标追踪算法在自动驾驶领域将发挥更加关键的作用。
2026-01-14 15:00:54 376B
1
内容概要:本文档详细介绍了Aumovio公司推出的第六代长距离毫米波雷达ARS620的技术规格、安装要求、电气参数及通信协议。ARS620是一款支持76-77GHz频段的雷达传感器,具备物体检测(OD)和雷达检测图像(RDI)功能,适用于自动驾驶辅助系统。其主要性能包括最大探测距离达280米,水平视场角±60°,垂直视场角±20°,并支持自动校准与遮挡检测。文档还列出了电源管理、CAN通信接口配置、所需车辆输入信号以及雷达输出的目标分类与运动状态信息。 适用人群:从事汽车电子系统开发、ADAS(高级驾驶辅助系统)集成、车载传感器应用的工程师和技术人员,尤其是涉及雷达选型、整车集成与调试的专业人员。 使用场景及目标:用于智能网联汽车中前向雷达系统的开发与部署,支持ACC自适应巡航、AEB紧急制动、FCW前方碰撞预警等功能的设计与验证;帮助开发团队完成雷达的硬件连接、信号匹配、标定调试及故障诊断。 其他说明:文档强调了安装时二次表面材料的选择标准与间距要求(建议≥10mm),并提供了详细的CAN报文结构与周期性/事件触发机制,便于系统集成。同时指出若输入信号无法满足条件,需通过邮件联系技术支持。
2026-01-11 23:37:38 1.1MB 毫米波雷达
1
内容概要:本文深入探讨了利用Perscan、Simulink和CarSim进行自动驾驶避障模型的设计与实现。首先介绍了如何在Perscan中创建动态障碍物,如蛇形走位的NPC车辆,通过调整参数模拟真实交通状况。接着详细讲解了Simulink中用于避障决策的控制逻辑,特别是模型预测控制(MPC)的应用,包括计算安全距离、选择最优路径以及紧急制动的策略。最后讨论了CarSim对避障效果的物理验证,确保算法符合车辆动力学特性,并解决了仿真过程中出现的时间同步问题。文中还分享了一些实践经验,强调了高精度时间和物理限制对于成功避障的重要性。 适合人群:从事自动驾驶技术研发的专业人士,尤其是对避障算法感兴趣的工程师和技术研究人员。 使用场景及目标:适用于希望深入了解自动驾驶避障系统的开发者,旨在帮助他们掌握从场景构建、算法设计到物理验证的完整流程,提高避障系统的可靠性和安全性。 其他说明:文章不仅提供了理论指导,还包括具体的代码示例,便于读者理解和实践。同时提醒读者注意仿真与现实之间的差距,强调了测试和优化的重要性。
2025-12-29 19:23:21 2.25MB
1
内容概要:本文介绍了自主代客泊车(AVP)的理论与实践,由上海交通大学溥渊未来技术学院副教授秦通主讲。课程分为十个章节,涵盖了从自主停车的基础概念到具体技术实现的各个方面。课程首先介绍了自主停车的意义及其应用场景,如减少停车难度、节省时间和优化资源利用。接着详细讲解了坐标变换、运动估计、相机模型、语义分割、停车场地图构建、语义定位、轨迹规划以及车辆控制等关键技术。每个章节都配有相应的作业,帮助学生巩固所学内容。最后,课程还包括一个最终模拟项目和前沿分享,使学生能够全面掌握AVP的技术体系。 适合人群:对自动驾驶和智能交通领域感兴趣的高校学生、研究人员及工程师,尤其是具备一定编程基础和技术背景的学习者。 使用场景及目标:①了解AVP的基本原理和应用场景;②掌握自主停车系统的核心技术,如坐标变换、感知、规划和控制;③通过实际项目操作,提升动手能力和解决实际问题的能力;④为未来从事自动驾驶相关研究或工作打下坚实基础。 其他说明:本课程要求学员具备Linux系统操作、C++编程技能、ROS使用经验以及Python/Pytorch的基础知识。此外,硬件方面需要一台配置有Nvidia GPU的计算机,以支持深度学习相关的实验。课程还提供了丰富的参考资料和学习材料,帮助学生更好地理解和掌握相关知识点。
2025-12-28 22:12:53 3.54MB Autonomous Parking Autonomous Vehicles
1
车辆三自由度动力学MPC跟踪双移线仿真研究:Matlab与Simulink联合应用,自动驾驶控制-车辆三自由度动力学MPC跟踪双移线 matlab和simulink联合仿真,基于车辆三自由度动力学模型的mpc跟踪双移线。 ,核心关键词:自动驾驶控制; 车辆三自由度动力学; MPC跟踪双移线; Matlab和Simulink联合仿真; 车辆三自由度动力学模型的MPC跟踪双移线。,基于MPC的自动驾驶车辆三自由度动力学模型双移线跟踪仿真研究 随着科技的进步和人们对出行安全、效率要求的提升,自动驾驶技术已经成为全球研究的热点。车辆三自由度动力学模型作为理解车辆运动的基础,为自动驾驶技术的发展提供了重要的理论支撑。本研究着重于将Matlab和Simulink这两种强大的工程计算和仿真工具结合起来,用于模拟和优化车辆在特定环境下的动态响应。 MPC(Model Predictive Control,模型预测控制)是一种先进的控制策略,它通过预测未来一段时间内的系统动态行为,制定当前时刻的最优控制策略,以实现对系统行为的精准控制。在自动驾驶领域,MPC能够有效解决车辆跟踪问题,尤其是在复杂的双移线行驶环境中。本研究利用MPC技术,结合车辆三自由度动力学模型,进行车辆的路径跟踪仿真。 Matlab是一种高级数值计算环境,它提供了一套完整的编程语言和工具箱,广泛应用于工程计算、数据分析和可视化等领域。Simulink作为Matlab的补充,是一个基于图形的多域仿真和模型设计软件,它以直观的拖放式界面,允许设计者构建复杂的动态系统模型。在自动驾驶技术的研究与开发中,Matlab和Simulink的联合使用可以极大地简化仿真过程,提高仿真结果的准确性和可靠性。 本研究的仿真结果不仅展示了车辆在给定双移线轨迹上的跟踪性能,而且验证了基于车辆三自由度动力学模型的MPC控制策略的有效性。通过对不同控制参数的调整和优化,可以实现对车辆横向位置、纵向速度等关键指标的精确控制。此外,本研究还探讨了车辆在实际行驶过程中可能遇到的各种不确定因素,如路面状况变化、车辆动力学特性偏差等,为自动驾驶控制策略的设计和优化提供了重要的参考。 通过本研究,可以看出,Matlab和Simulink在自动驾驶控制系统仿真中的应用具有显著的优势。它不仅能够帮助工程师快速实现复杂控制算法的设计和验证,还能通过仿真结果对自动驾驶系统的性能进行全面评估。这些仿真工具的使用,有助于降低研发成本,缩短研发周期,为自动驾驶技术的商业化和规模化应用奠定了坚实的基础。 本研究通过Matlab和Simulink联合仿真,验证了基于车辆三自由度动力学模型的MPC控制策略在自动驾驶车辆跟踪双移线行驶中的有效性。该研究不仅为自动驾驶控制技术的发展提供了理论和技术支持,还展示了仿真技术在解决复杂控制问题中的实际应用价值。随着自动驾驶技术的不断发展和完善,基于Matlab和Simulink的仿真方法将发挥更加重要的作用。
2025-12-24 14:20:14 320KB xhtml
1
适用于L4/L5级高中低速场景的高性能低延时自动驾驶中间件水杉单机版SDK. 全量SDK支持:同机微秒级的进程间通信且与通信消息数据大小无关,支持发布/订阅(pub/sub)通信模式,分布式通信无中心节点,分布式通信总线,自动服务发现,自动匹配链接,自动按需转发,执行权内存空间完全可配置,适用于多进程、多线程、多机间的通信与资源监控;使多进程通信互联如单进程多线程一样简单,具备多进程的优点,且具有单进程多线程的通信速度,任意进程出现问题都不会影响其他进程;纯C++开发不依赖任何第三方库;支持自定义数据协议语言,可自由定义通信数据协议,并由数据协议语言编译器自动生成C++数据协议代码;支持资源监控,可对整个多主机多节点的分布式系统进行资源监控,便于分析系统最优资源配置及调优,即使无经验人员也可以轻松针对不同硬件资源做出最优的资源配置。
2025-12-14 19:41:49 113KB 自动驾驶
1
"UN R158 关于批准倒车装置和机动车的统一规定(中文版)" 该法规的目的是为倒车提供有关弱势道路使用者的接近感知规定。UN R-46提供机动车间接视野的条款。该法规在车辆倒车时扩展了驾驶员视野或车辆对后方的感知。 倒车运动装置的安装 倒车运动装置是指在15.2定义的视野内清楚看到车辆后方的装置。这些装置可以是传统的后视镜,后视摄像头系统或能够向驾驶员展示视野信息的其他装置。 定义 * 倒车运动装置:在15.2定义的视野内清楚看到车辆后方的装置。 * 近距离后视装置:提供本法规15.2定义的视野的装置。 * 间接视野装置:展示有关本法规15.2定义的视野相关信息的装置。 * 后视摄像头系统:任何旨在呈现外界图像并通过摄像头方式在15.2定义的视野范围内清晰展示车辆后方景象的系统。 * 近距离后视镜:旨在通过反射表面的方式在15.2定义的视野内清晰展示车辆后方景象的任何装置,潜望镜除外。 间接视野装置认证标志的排列 间接视野装置认证标志的排列是根据第158号法规规定的。该标志是为了证明该装置符合本法规的要求。 检测系统的试验方法 检测系统的试验方法是为了验证该系统是否符合本法规的要求。该试验方法包括近距离后视镜视野的试验方法和检测系统的试验方法。 生产一致性 生产一致性是指制造商必须确保其生产的倒车运动装置符合本法规的要求。 不符合保护规定的处罚 如果制造商未能符合本法规的要求,将面临处罚。 最终停产 如果制造商未能符合本法规的要求,将面临最终停产。 负责进行认证试验的技术服务机构和型式认证机构的名称和地址 负责进行认证试验的技术服务机构和型式认证机构的名称和地址是为了证明该机构拥有认证试验的资格和能力。 本法规的目的是为倒车提供有关弱势道路使用者的接近感知规定。该法规规定了倒车运动装置的安装、定义、检测系统的试验方法、生产一致性、不符合保护规定的处罚和最终停产等方面的要求。
2025-11-24 16:27:44 1.45MB 自动驾驶
1
内容概要:本文介绍了基于快速探索随机树(RRT)算法的自动驾驶汽车路径规划方法,重点解决在存在静态障碍物环境下实现有效避障与路径搜索的问题。该方法通过在Matlab环境中构建仿真模型,利用RRT算法的随机采样特性扩展搜索树,逐步探索可行路径,最终生成从起点到目标点的安全、连通路径。文中提供了完整的Matlab代码实现,便于读者复现和调试算法,同时展示了算法在复杂地图中的路径规划效果,突出了其在非完整约束系统中的适用性。; 适合人群:具备一定Matlab编程基础,从事自动驾驶、机器人或智能交通系统相关研究的科研人员及高校研究生。; 使用场景及目标:①学习RRT算法的基本原理及其在路径规划中的具体实现;②掌握在静态障碍物环境中进行路径搜索与避障的技术方法;③通过Matlab仿真验证算法性能,为进一步改进如RRT*等优化算法奠定基础; 阅读建议:建议结合Matlab代码逐行理解算法流程,重点关注随机采样、最近节点查找、路径扩展与碰撞检测等核心模块的实现,配合仿真结果分析算法优缺点,并尝试调整参数或引入优化策略以提升路径质量。
2025-11-23 20:04:24 15KB 路径规划 RRT算法 自动驾驶 Matlab仿真
1
自动驾驶控制算法是实现自动驾驶车辆自主行驶的关键技术之一,其核心任务包括路径规划、车辆控制、环境感知和决策制定等。在这一领域,算法设计的优劣直接关系到自动驾驶的安全性和可靠性。B站老王,作为自动驾驶领域的知名技术分享者,其分享的资源往往深受行业从业者的关注。 老王所分享的自动驾驶控制算法笔者代码及笔记,不仅涵盖了自动驾驶系统的基本理论和实践知识,还包括了具体的算法实现。通过这份资源,学习者能够深入了解自动驾驶的控制算法,并掌握其编程实现的具体步骤。这对于那些希望深入了解自动驾驶技术的工程师和技术爱好者来说,是一份宝贵的参考资料。 代码及笔记中可能包含的内容涉及但不限于以下几个方面: 1. 控制算法基础:包括经典控制理论,如PID控制,以及现代控制理论在自动驾驶中的应用,例如状态空间控制、模型预测控制等。 2. 路径规划算法:这部分内容可能会涉及如何在给定的环境和条件下计算出最优行驶路径,常用的算法包括A*搜索算法、Dijkstra算法、RRT(Rapidly-exploring Random Tree)算法等。 3. 环境感知技术:这可能包括使用雷达、摄像头、激光雷达等传感器获取环境信息,并利用计算机视觉、点云处理等技术进行分析和理解的技术细节。 4. 传感器数据融合:为了提高自动驾驶系统的准确性和可靠性,多种传感器的数据融合技术也是关键。这里可能涉及到卡尔曼滤波器、粒子滤波器等算法的应用。 5. 决策系统:这部分内容会聚焦于在复杂交通环境中做出决策的算法,包括行为预测、决策树、贝叶斯网络等。 6. 车辆动力学模型:理解车辆的物理特性和动力学模型对于设计有效的控制算法至关重要,笔记中可能会涉及车辆动力学方程的建立和简化。 7. 实时系统与仿真:由于自动驾驶算法需要实时响应,因此代码和笔记中可能会包含相关的实时系统设计原则和仿真测试环境的构建。 8. 代码实现:除了理论知识外,笔记中还包含具体的编程实现,涉及编程语言选择、算法的数据结构设计、功能模块划分等。 9. 笔记总结:可能会有对自动驾驶控制算法的深入思考和经验总结,以及在实际操作中遇到的问题和解决方案。 上述内容构成了老王分享的自动驾驶控制算法笔者代码及笔记的核心框架,对于自动驾驶技术的学习和研究具有重要的参考价值。
2025-11-18 14:11:21 356B 代码及笔记
1
B站忠厚老实的老王在自动驾驶领域的贡献体现在其对于自动驾驶控制算法的研究与实践。在这一领域,控制算法是自动驾驶系统的核心技术之一,它关系到车辆对于各种道路情况的适应能力、行驶的安全性以及乘坐的舒适性。 老王所分享的自动驾驶控制算法内容,对于该领域的研究者和工程师而言,是一份宝贵的资源。自动驾驶控制算法的开发和优化,往往需要对车辆动力学、环境感知、路径规划、车辆与交通协同等多方面进行深入理解和综合应用。因此,一个完善的控制算法不仅要求算法本身具有良好的稳定性和鲁棒性,还要求算法能够在复杂的交通环境中做出准确的判断和高效的反应。 在自动驾驶控制系统中,算法的效率直接影响到车辆的响应速度和处理紧急情况的能力。由于自动驾驶面临的是一个高度动态和不确定的环境,这就要求控制算法必须能够实时、准确地处理来自车辆传感器的数据,并基于这些数据做出合理的决策。 老王的代码及笔记很可能是对这些算法实现细节的记录,包含了算法设计思路、代码实现、调试过程和实验结果等内容。对于自动驾驶控制算法的开发者来说,这些内容能够帮助他们理解算法的实现原理,快速定位和解决问题。同时,由于自动驾驶控制算法涉及到的技术细节繁多,这样的资源也为初学者提供了一条学习和掌握该领域知识的捷径。 此外,控制算法笔记还可能包含了对当前自动驾驶技术发展态势的分析,以及对未来技术趋势的预测。这些内容对于想要了解自动驾驶控制技术的发展方向和前沿动态的研究人员和工程师来说,具有很高的参考价值。 老王所分享的自动驾驶控制算法及其笔记,不仅是一份实用的工具,更是一个学习和交流的平台。它为自动驾驶领域的专业人士提供了一个共同进步的机会,也为自动驾驶技术的普及和推广做出了贡献。
2025-11-18 14:10:44 356B 代码及笔记
1