在本资源包中,我们聚焦于使用MATLAB这一强大的编程环境来实现统计学习、机器学习、神经网络以及深度学习的相关算法和技术。MATLAB是工程和科学领域常用的工具,尤其在数据分析和模型构建方面表现出色。以下将详细阐述这些领域的基础知识及其在MATLAB中的应用。 一、统计学习 统计学习是数据挖掘和机器学习的基础,它涵盖了各种方法,如线性回归、逻辑回归、决策树等。在MATLAB中,可以使用内置函数如`regress`进行线性回归分析,`logistic`进行逻辑回归,或者`fitrtree`构建决策树。此外,`fitensemble`函数可以用来创建集成学习模型,如随机森林或梯度提升机。 二、机器学习 机器学习是让计算机通过数据自我学习和改进的方法。MATLAB提供了丰富的机器学习工具箱,包括支持向量机(SVM)、K近邻(KNN)、朴素贝叶斯(Naive Bayes)等。例如,`svmtrain`和`svmpredict`用于SVM分类与预测,`knnsearch`实现KNN算法,`nbclassify`则服务于朴素贝叶斯分类。 三、神经网络 神经网络是模拟人脑神经元结构的计算模型,广泛应用于图像识别、自然语言处理等领域。MATLAB的神经网络工具箱提供了构建和训练各种神经网络的能力,如前馈网络、循环网络和卷积网络。`feedforwardnet`用于创建前馈网络,`train`函数用于训练,`sim`进行网络预测。此外,深度学习工具箱支持更复杂的网络结构,如`alexnet`、`vgg16`等预训练模型。 四、深度学习 深度学习是机器学习的一个分支,通过多层非线性变换对复杂数据进行建模。MATLAB的深度学习工具箱提供了一系列的深度学习模型,如卷积神经网络(CNN)、递归神经网络(RNN)、长短期记忆网络(LSTM)等。例如,`convn`函数执行卷积操作,`lstmLayer`创建LSTM层,`trainNetwork`用于训练整个网络模型。 在资源包中,包含的源代码和数据资料将帮助用户更深入地理解并实践上述概念。通过实际操作,用户可以学习如何在MATLAB中设计、训练和优化模型,同时获取对各种算法性能的直观认识。这些实例代码不仅适用于初学者,也对有一定基础的研究人员提供了宝贵的参考资料,便于他们快速实现自己的算法并验证结果。 这个资源包是学习和研究MATLAB在统计学习、机器学习、神经网络和深度学习领域应用的理想材料,可以帮助用户提升技能,解决实际问题,并为学术研究或项目开发打下坚实基础。
2024-08-10 20:44:24 106KB matlab 机器学习 神经网络 深度学习
1
Spark-Core文档是本人经三年总结笔记汇总而来,对于自我学习Spark核心基础知识非常方便,资料中例举完善,内容丰富。具体目录如下: 目录 第一章 Spark简介与计算模型 3 1 What is Spark 3 2 Spark简介 3 3 Spark历史 4 4 BDAS生态系统 4 5 Spark与Hadoop的差异 5 6 Spark的适用场景 6 7 Spark成功案例 6 第二章 Spark开发环境搭建 8 1 Spark运行模式 8 2 Spark环境搭建 8 2.1Scala的安装 8 2.2Spark的单节点配置 9 2.3Spark-Standalone集群配置 9 2.4Spark-on-Yarn模式配置 12 2.5Spark-on-Mesos模式配置 13 2.6Hive-on-Spark配置 13 第三章 Spark计算模型 15 1 RDD编程 15 1.1弹性分布式数据集RDD 15 1.2构建RDD对象 15 2RDD操作 15 2.1将函数传递给Spark 16 2.2了解闭包 16 2.3Pair RDD模型 17 2.4Spark常见转换操作 18 2.5Spark常见行动操作 20 2.6RDD持久化操作 21 2.7注意事项 23 2.7并行度调优 24 2.8分区方式 25 3Examle:PageRank 27 第四章 Spark编程进阶 29 1共享变量 29 1.1累加器 30 1.2广播变量 31 2基于分区进行操作 32 3与外部程序间的管道 33 4数值RDD的操作 34 5 Spark Shuffle机制 34 第五章 Spark调优与调试 39 1开发调优: 40 1.1调优概述 40 1.2原则一:避免创建重复的RDD 40 1.3原则二:尽可能复用同一个RDD 41 1.4原则三:对多次使用的RDD进行持久化 42 1.5原则四:尽量避免使用shuffle类算子 43 1.6原则五:使用map-side预聚合的shuffle操作 44 1.7原则六:使用高性能的算子 45 1.8原则七:广播大变量 46 1.9原则八:使用Kryo优化序列化性能 47 1.10原则九:优化数据结构 48 2资源调优 48 2.1调优概述 48 2.2 Spark作业基本运行原理 49 2.3资源参数调优 50 第六章 Spark架构和工作机制 52 1 Spark架构 52 1.1 Spark架构组件简介 52 1.2 Spark架构图 54 2 Spark工作机制 54 2.1 Spark作业基本概念 54 2.2 Spark程序与作业概念映射 55 2.3 Spark作业运行流程 55 3 Spark工作原理 55 3.1 作业调度简介 55 3.2 Application调度 56 3.3 Job调度 56 3.4 Tasks延时调度 56 第七章 Spark运行原理 57 1 Spark运行基本流程 57 2 Spark在不同集群中的运行架构 58 2.1 Spark on Standalone运行过程 59 2.2 Spark on YARN运行过程 60
2023-09-26 13:01:48 6.54MB Spark 初学者 大数据 资料归档
1
seaborn程序库在执行 `seaborn.load_dataset` 函数时需要从网站上下载的样本数据集,包括:sanagrams,anscombe,attention,brain_networks,car_crashes,diamonds,dots,dowjones,exercise,flights,fmri,geyser,glue,healthexp,iris,mpg,penguins,planets,seaice,taxis,tips,titanic等数十个经典分析数据表格(csv)。
2023-04-01 23:57:28 4.84MB python scikit-learn seaborn
1
德国大陆SRR308-21毫米波雷达数据资料,典型应用领域: - 汽车前向AEB/ACC/FCW等ADAS和自动驾驶等场景 - 起重机(RTG,RMG,STS,桥式起重机,龙门起重机)的避障防撞、作业区监测等 - 远程区域监控(适用于危险或不能进入的区域) - 目标分类 - 雨雾霾雪等复杂环境下的目标检测 - 道闸防砸检测
2023-03-25 10:24:21 796KB SRR308-21 毫米波雷达 德国大陆
1
单片机 串行连接 wifi模块 WIFI传输数据
2023-03-21 13:52:13 3.45MB WIFI
1
基于Tensorflow的手势识别系统源码+数据资料.zip python语言实现。基于Tensorflow的手势识别1.采集数据集 运行: get_gesture_images.py文件 可用不用运行,因为样本集已有 样本集存放的目录:train_gesture_data 2.训练模型 新建目录: gesture_recognition_model/gestureModel 和gesture_recognition_model/gestureModel_one 运行: gesture_recongnition.py文件 3.测试样本的预测 运行 pred_gesture.py文件
基于计算机视觉和机器学习的人脸检测及人脸识别系统源码+数据资料.zip本项目是基于OpenCV2跨平台计算机视觉和机器学习软件库的人脸检测及人脸识别系统, 采用Web应用作为用户和管理的交互页面。 系统人脸识别模块的图像处理采用PIL(Python Image Library)。 BPL是python的第三方图像处理库,但是由于其强大的功能与众多的使用人数,几乎已经被认为是python官方图像处理库了 软件架构 Flask:Flask是一个使用 Python 编写的轻量级 Web 应用程序框架。 OpenCV2:OpenCV2是一个跨平台计算机视觉和机器学习软件库。 LayUI:layui(谐音:类UI) 是一款采用自身模块规范编写的前端 UI 框架,遵循原生 HTML/CSS/JS 的书写与组织形式,门槛极低,拿来即用。且是国人开发,拥有较为完善的中文文档。 Pymysql及PooledDB:PyMySQL 是在 Python3.x 版本中用于连接 MySQL 服务器的一个库。DBUtils是一套Python数据库连接池包,并允许对非线程安全的数据库接口进行线程安全包装。
软件基本档案导入工具旨在简化切换零售软件时基本档案导入流程,提高数据转化效率,避免垃圾数据,确保数据准确性。集商品品类导入、供应商档案导入、品牌信息导入、商品资料导入、会员信息导入、客户档案导入和批量更改商品档案属性于一体,用户只消将其他软件的基本资料整理至对应Excel模板,即可直接导入至零售软件。 本程序适用:eShop小牛云商6、eShop考拉母婴6、eShop美丽管家5.5、eShop美丽管家5、eShop小象称重4、eShop商业管理5、eShop商业管理4、eShop服装管理5、eShop服装管理4、商旗10、商慧7、商锐V9.7、商锐V9.5、商锐V9、商锐V8、商云智强11、商云X、商云V8、商业之星V7、商业之星V6、超市之星V5、爱贝母婴7、孕婴童专业2017、孕婴童用品3、专卖店V10、专卖店V9、专卖店V8、专卖店V7、专卖店V6、称心管家8、称心管家3、e店通10、连锁便利店V9、连锁便利店V8、连锁便利店V7、烘焙之星V10、烘焙之星V9、烘焙之星V8、烘焙之星V7.5、服装之星V10、服装之星V9、服装之星V8、服装之星V7、易捷通等。
2022-12-01 09:20:04 13.51MB 基础数据 资料导入
1
基于图像处理(非机器学习)的方法实现细胞的检测和分割的全部数据资料并对结果进行评估。 我们将整个程序分成7个python文件,其中三个文件是细胞分割的算法,一个结果评估的文件,一个细胞再筛选的文件,一个图像处理的文件和一个main文件 三个划分算法分别为:cell_segmentation_by_sub.py、cell_segmentation_by_shape.py、cell_segmentation_by_fit.py. 结果评估文件是:divide_assessment.py. 细胞再筛选文件是:results_filter.py. 图像处理文件是:image_processing.py. 主程序文件:main.py. 基于图像处理(非机器学习)的方法实现细胞的检测和分割的全部数据资料并对结果进行评估。基于图像处理(非机器学习)的方法实现细胞的检测和分割的全部数据资料并对结果进行评估。基于图像处理(非机器学习)的方法实现细胞的检测和分割的全部数据资料并对结果进行评估。基于图像处理(非机器学习)的方法实现细胞的检测和分割的全部数据资料并对结果进行评估。
基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料