项目工程资源经过严格测试可直接运行成功且功能正常的情况才上传,可轻松copy复刻,拿到资料包后可轻松复现出一样的项目,本人系统开发经验充足(全栈开发),有任何使用问题欢迎随时与我联系,我会及时为您解惑,提供帮助 【资源内容】:项目具体内容可查看/点击本页面下方的*资源详情*,包含完整源码+工程文件+说明(若有)等。【若无VIP,此资源可私信获取】 【本人专注IT领域】:有任何使用问题欢迎随时与我联系,我会及时解答,第一时间为您提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 【适合场景】:相关项目设计中,皆可应用在项目开发、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面中 可借鉴此优质项目实现复刻,也可基于此项目来扩展开发出更多功能 #注 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担 2. 部分字体及插图等来自网络,若是侵权请联系删除,本人不对所涉及的版权问题或内容负法律责任。收取的费用仅用于整理和收集资料耗费时间的酬劳 3. 积分资源不提供使用问题指导/解答
2024-11-24 18:14:58 7.92MB
1
基于spark期末大作业等等项目代码.zip 基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等
2024-11-24 17:58:13 311.49MB spark
1
该项目是关于实时数据处理和可视化的综合应用,利用了大数据技术栈中的多个组件,包括Spark、Kafka、Flume、Echarts以及Hadoop。以下是这些技术在该项目中的具体作用和相关知识点: 1. **Spark**: Apache Spark是一个快速、通用且可扩展的大数据处理框架。在该项目中,Spark可能被用于实时数据流处理,对新闻和健身数据进行实时分析。Spark Streaming可以接收到Kafka中的数据流,并进行实时计算,如聚合、过滤或复杂事件检测,为业务决策提供及时的数据支持。 2. **Kafka**: Kafka是一款高吞吐量的分布式消息系统,常用于构建实时数据管道和流处理应用。在这个项目中,Kafka可能作为数据收集和分发的中心节点,接收来自不同源头(如新闻源、健身设备)的数据,并将其分发到Spark流处理作业或者存储到Hadoop等持久化系统中。 3. **Flume**: Flume是Apache的一个数据收集工具,用于高效、可靠地聚合和移动大量日志数据。在本项目中,Flume可能被用来从各种分散的源(如网络爬虫、服务器日志)收集新闻和健身数据,然后将这些数据发送到Kafka队列,以便进一步处理。 4. **Echarts**: Echarts是百度开源的一款基于JavaScript的数据可视化库,支持丰富的图表类型,如折线图、柱状图、饼图等。在这个项目中,Echarts可能用于将Spark处理后的数据结果以直观的图表形式展示出来,帮助用户更好地理解和分析新闻、健身数据的趋势和模式。 5. **Hadoop**: Hadoop是Apache的一个分布式文件系统,设计用于处理和存储大规模数据集。在这个项目中,Hadoop可能用于离线批处理,对历史数据进行深度分析,或者作为Spark处理后的数据备份和归档存储。 项目提供的文档和教程可能涵盖了如何设置和配置这些组件,如何编写Spark Streaming作业,如何使用Flume收集数据,如何在Kafka中设置主题和消费者,以及如何用Echarts创建交互式数据可视化。同时,它还可能涉及如何将所有这些组件整合到一个工作流程中,以实现端到端的实时数据处理和分析。 通过学习和实践这个项目,你可以深入理解大数据实时处理的工作流程,提升在大数据领域的能力,包括数据采集、流处理、数据分析和可视化等多个方面。对于想要从事大数据相关工作的专业人士,这是一个非常有价值的实践案例。
2024-11-14 07:43:50 161.31MB spark hadoop kafka kafka
1
《基于Spark的外卖大数据平台分析系统实现》 在当今信息化社会,大数据已成为企业决策的关键因素。尤其是在外卖行业中,海量的订单、用户行为、地理位置等数据蕴含着丰富的商业价值。本项目将详细介绍如何利用Apache Spark构建一个高效的数据分析系统,对外卖大数据进行深度挖掘,为业务优化和市场策略提供有力支持。 Apache Spark是大数据处理领域的一款强大工具,以其内存计算、高并发和易用性等特性,被广泛应用于实时和离线数据分析。在构建外卖大数据平台分析系统时,我们首先需要理解Spark的基本架构和核心组件。Spark的核心包括Spark Core、Spark SQL、Spark Streaming、MLlib(机器学习库)以及GraphX(图计算)。这些组件协同工作,可实现数据的存储、处理、查询和模型训练等多元化功能。 1. Spark Core:作为基础框架,负责任务调度、内存管理、集群通信等。它提供了弹性分布式数据集(Resilient Distributed Dataset, RDD),是Spark处理数据的基本单元,具备容错性和并行计算能力。 2. Spark SQL:结合了SQL查询和DataFrame/Dataset API,使得开发人员可以方便地在SQL和程序化API之间切换,处理结构化和半结构化数据。 3. Spark Streaming:用于实时数据流处理,通过微批处理方式实现低延迟的数据处理。对于外卖平台,这可以用于实时监控订单状态、用户行为等。 4. MLlib:Spark内置的机器学习库,提供多种算法,如分类、回归、聚类、协同过滤等,支持模型评估和调优,为外卖平台的个性化推荐、热点预测等提供可能。 5. GraphX:用于处理图数据,可以用来分析用户关系网络、商家关联等。 在搭建外卖大数据平台时,我们需要考虑以下几个关键步骤: 1. 数据采集:从各种来源(如订单系统、用户APP、第三方API等)收集数据,形成数据湖。 2. 数据预处理:清洗数据,处理缺失值、异常值,进行数据转换,使其适用于后续分析。 3. 数据存储:使用Hadoop HDFS或Spark原生的分布式文件系统(如Alluxio)存储大量数据。 4. 数据处理:使用Spark SQL进行数据查询和分析,Spark Streaming处理实时数据流,如实时订单跟踪。 5. 数据挖掘与建模:利用MLlib进行特征工程、模型训练和验证,如用户画像构建、需求预测等。 6. 结果可视化:通过Tableau、PowerBI等工具将分析结果以图表形式展示,便于决策者理解。 7. 系统优化:不断调整Spark配置,如分区策略、executor内存大小等,以提高性能和资源利用率。 基于Spark的外卖大数据平台分析系统能够高效处理海量数据,实现快速响应和深度洞察,从而助力外卖行业的精细化运营,提升用户体验,驱动业务增长。
2024-10-29 16:05:22 655KB spark 数据分析
1
(1)Python爬虫进行数据爬取; (2)搭建Hadoop分布式集群; (3)Hive数仓存储原始数据; (4)Spark整合Hive完成数据分析,结果存入MySQL; (5)Spring Boot+ECharts进行数据可视化。
2024-10-29 16:01:36 7.37MB hadoop spark 数据分析
1
在本项目中,我们主要探讨的是如何利用Apache Spark进行大规模咖啡销售数据的分析与可视化。Apache Spark是一个分布式计算框架,以其高效、易用和适用于大数据处理的特性而广受欢迎。SparkRDD(弹性分布式数据集)是Spark的核心数据结构,它提供了一种抽象的数据并行计算模型。 我们要理解Spark的工作原理。Spark采用内存计算,相比于Hadoop MapReduce的磁盘存储,大大提高了数据处理速度。SparkRDD是Spark对数据的基本抽象,它将数据分布在集群的各个节点上,可以执行各种并行操作。在我们的案例中,SparkRDD将用于处理咖啡销售数据,如统计销售额、销量等关键指标。 项目环境搭建方面,IDEA是一个流行的Java集成开发环境,用于编写Spark程序;Hadoop作为大数据处理的基础平台,提供了分布式文件系统HDFS,用于存储咖啡销售数据;而Python则是Spark常用的一种编程语言,用于编写数据处理逻辑。 在数据处理阶段,我们将首先使用Python读取Hadoop HDFS上的咖啡销售数据,然后通过SparkContext创建SparkRDD。接着,我们可以运用一系列的转换和行动操作,例如`map`、`filter`、`reduceByKey`等,对数据进行预处理,提取出我们需要的信息,比如按地区、按时间、按咖啡种类等维度进行分类统计。 数据分析完成后,我们将进入可视化阶段。这可能涉及使用Python的matplotlib、seaborn或者pandas库,生成图表以直观展示分析结果。例如,我们可以创建条形图来展示各地区的销售排名,使用折线图展示销售趋势,或者使用热力图分析不同时间段的销售情况。可视化可以帮助我们更好地理解数据背后的模式和趋势,从而为业务决策提供依据。 此外,项目提供的源码和文档是学习的关键。源码能让我们看到具体的实现过程,了解如何在实际项目中应用Spark进行数据处理。文档则会解释代码的逻辑和功能,帮助初学者理解各个步骤的意图,快速掌握Spark数据分析的技巧。 总结来说,这个项目涵盖了大数据处理的基础架构(Idea、Hadoop、Spark),重点在于使用SparkRDD进行数据处理和分析,以及使用Python进行数据可视化。对于想要提升大数据处理能力,尤其是熟悉Spark的开发者,这是一个很好的实践案例。通过深入学习和实践,你可以进一步理解大数据分析的流程,提升自己在大数据领域的专业技能。
2024-10-29 16:00:59 356KB spark 数据分析
1
# wifi 基于flume+kafka+HBase+spark+ElasticSearch的用户轨迹查询大数据开发项目 项目名称:实时的用户轨迹查询项目 项目介绍:     利用企业建设的WIFI基站,实时采集用户的信息,可以基于这些信息做用户画像处理,网络安全监控,精准营销等; 项目架构: 主要是基于Flume+Kafka+Sparkstreaming +HBase+ES来实现实时的用户信息存储轨迹查询任务。 每个部分的数据运行结果以及集群的运行状况见结果文件ProjectResult!!!
2024-07-08 22:13:24 301.98MB kafka kafka flume elasticsearch
1
Spark是一个通用的并行计算框架,由加州伯克利大学(UC Berkeley) 的AMP实验室开发于2009年,并于2010年开源,2013年成长为Apache旗下在大数据领域最活跃的开源项目之一。 虽然Spark是一个通用的并行计算框架,但是Spark本质上也是一个基于map-reduce算法模型实现的分布式计算框架,Spark不仅拥有了Hadoop MapReduce的能力和优点,还解决了Hadoop MapReduce中的诸多性能缺陷。
2024-07-01 21:44:42 23.94MB
1
spark+hadoop大数据处理学习笔记
2024-07-01 20:48:27 936B hadoop spark
1
支持spark集群下的pyspark环境生产tfrecord样本,可以使用常见的接口加载jar包对DataFrame数据进行格式转换,直接输出tfrecord文件到hdfs上。方便后续链路使用tensorflow来做进一步的样本加工和数据训练。支持spark 2.12版本。
2024-06-25 11:03:09 1.21MB tensorflow pyspark tfrecord
1