针对Kalman滤波易受粗差影响而导致结果失真的问题,提出一种抗差自适应Kalman滤波方法,该方法结合自适应滤波与抗差Kalman滤波的优点,同时设计自适应因子和抗差因子,采用改进的两段Huber函数与2~3倍的观测噪声中误差来充当抗差因子与粗差判别标准。并对Kalman滤波和抗差自适应滤波(Adaptive Robust Kalman Filtering,ARKF)结果进行比较。车载实验结果表明,ARKF可以有效抵制观测异常对状态估值的影响,同时在系统先验信息不能精确给出的情况下,显著改善了滤波估值的稳定性和可用性。
1