针对目前国内RFIC发展比较滞后的现状,设计了3款应用于GNSS接收机的基于0.5μm SiGe HBT工艺的混频器(Ⅰ、Ⅱ、Ⅲ),并采用针对混频器的优良指数FOM(figure-of-merit)对这3个混频器进行结构和综合性能比较。3款混频器的供电电压为3.3V,本振LO输入功率为-10dBm,其消耗总电流、转换增益、噪声系数、1dB增益压缩点依次为:Ⅰ)8.7mA,15dB,4.1dB,-17dBm;Ⅱ)8.4mA,10dB,4.6dB,-10dBm;Ⅲ)5.4mA,11dB,4.9dB,-10dB
2025-09-22 19:24:46 625KB
1
全球导航卫星系统(GNSS)是现代定位技术的核心,它通过接收地球轨道上卫星的信号来确定地面或空中接收器的精确位置。GNSS技术广泛应用于测绘、海洋、航空、汽车导航以及科学研究等领域。其中,PPP(精密单点定位)是一种高精度的定位技术,其全称为Precise Point Positioning。PPPH则是PPP技术的一种改进版本,它通过一系列复杂的算法对卫星信号进行处理,以获得更精确的定位结果。 本开源代码和说明书的编写语言选择了MATLAB,MATLAB是一种用于算法开发、数据可视化、数据分析以及数值计算的高级编程语言和交互式环境。它在工程和科研领域有着广泛的应用,特别是在信号处理、通信、控制系统等领域。由于MATLAB支持矩阵运算和图形显示,并且拥有丰富的工具箱,因此非常适合用来开发和测试GNSS定位算法。 PPPH开源代码的使用对那些需要进行高精度导航定位研究的工程师和科研人员来说具有重要意义。该代码能够帮助用户理解和实现PPPH算法,以便在实际应用中对卫星信号进行更精确的处理。此外,开源性质还意味着代码可以被研究人员自由地修改和改进,以适应不同的应用场景和需求。 在具体实施过程中,PPPH算法通常包括以下几个关键步骤:首先是原始观测数据的采集,这一步需要高性能的GNSS接收器;其次是数据预处理,包括载波相位和伪距的提取、去噪和质量检查;接着是进行初始位置解算,通常是以单点定位或差分定位的方式;然后是实现PPP算法的精确解算,这部分包括卫星轨道误差、卫星钟差、大气延迟等误差的精确建模与校正;最后是定位结果的输出,这一步涉及到定位结果的精度评估和可靠性分析。 使用PPP/PPPH技术进行导航定位,除了能够提供高精度的位置信息,还能够提供时间同步服务。这对于需要精确时间戳的科研项目,比如地球物理学研究、地震监测等领域来说尤为重要。此外,PPPH在恶劣的信号条件下,如城市峡谷和室内环境,依然能够提供较为稳定的定位性能,这也是其技术优势之一。 本开源代码和说明书提供了宝贵的资源,使得更多的工程师和科研人员能够利用MATLAB的强大功能,深入理解和掌握PPPH算法,进而推动高精度导航定位技术的发展和应用。
2025-09-13 14:39:11 24.55MB GNSS matlab 导航定位
1
用于处理和分析GPS卫星的轨道信息。该系统能够读取标准的RINEX格式广播星历(NAV)和SP3格式精密星历,计算卫星在任意时刻的位置,并比较两种星历的精度差异。本文将深入剖析系统架构、核心算法和实现细节。 在现代导航技术中,全球定位系统(GPS)扮演着至关重要的角色。为了保证GPS提供的数据准确性,对GPS卫星的轨道信息进行精准处理和分析至关重要。为此,科研人员开发了多种工具来完成这一任务。本文所介绍的工具便是其中之一,它专注于读取和分析GPS卫星轨道信息,尤其在精度对比方面表现出色。 该工具能够处理标准的RINEX(Receiver Independent Exchange Format)格式的广播星历文件,通常以.NAV为后缀。RINEX是一种开放标准格式,被广泛用于各种类型的地面站接收机。此外,工具还能够读取SP3(Standard Product 3)格式的精密星历文件。SP3格式文件以更高的精度提供了GPS卫星的轨道参数,是研究和开发中常用的精密数据源。 工具的核心功能之一是计算卫星在任意时刻的位置。为了实现这一点,系统采用了先进的算法来解析这两种格式的数据文件,并将它们转化为可以计算卫星位置的信息。这一过程需要对GPS的导航算法有深入的理解,包括卫星的轨道模型、信号传播时延、大气修正等关键技术。 在完成卫星位置计算之后,该系统还能够对两种不同格式的星历精度进行比较。这种比较通常基于时间序列分析,研究者通过对比同一时刻由两种不同格式星历计算出的卫星位置,来评估它们之间的差异。评估结果能够帮助用户了解不同数据源的可靠性和适用性。 为了更深入地理解该工具的工作原理,本文将剖析其系统架构。架构通常包括数据输入模块、处理算法模块以及结果输出模块。数据输入模块负责接收RINEX和SP3文件,并对数据进行预处理。处理算法模块则包含了轨道计算与精度对比的核心算法,这是工具功能实现的关键。结果输出模块将计算结果以及精度对比分析报告以用户友好的方式呈现出来。 在实现细节方面,系统内部可能涉及了多种编程技术与算法。例如,采用的轨道计算方法可能包括卡尔曼滤波、最小二乘法等数值分析方法,这些方法能够提供更精确的轨道参数估计。另外,为了提高工具的易用性和扩展性,开发人员可能还会使用现代编程语言如Python,并借助其丰富的库和框架来构建和优化系统的各个部分。 文件名称列表提供了工具的实际操作文件,其中,brdc1260.25n和COD0OPSRAP_20251260000_01D_05M_ORB.SP3分别代表了RINEX格式和SP3格式的星历文件。brdxyz_gps.py和brdxyz.py等Python脚本文件则可能包含了读取、处理和分析这些数据的代码。rinex_reader.py文件名暗示了它可能专门用于解析RINEX格式数据。ephemeris_comparison.txt文件可能保存了星历精度对比的结果。而test.py文件可能包含了单元测试代码,用以确保工具的各个功能模块能够正确无误地运行。 该工具对于提高GPS卫星轨道信息处理与分析的效率和准确性具有重要意义。无论是在科研领域还是商业应用中,都能够提供可靠的技术支持,帮助相关人士更好地利用GPS技术进行导航定位、时间同步以及地球科学研究等任务。
2025-07-30 13:51:51 1.42MB GNSS
1
BD420004-2015北斗全球卫星导航系统(GNSS)导航型天线性能要求及测试方法
2025-07-28 11:20:17 412KB
1
这就是小编,耗时一夜一上午,获得的全新感悟,和大家共享。
2025-07-27 22:06:51 823KB GNSS
1
本文在定制的FPGA+DSP的硬件平台上,利用DSP芯片的QDMA功能,消除了连续数据读取间隔的无效时间,并实现了卫星信号处理与相关值数据传输的并行化,显著降低了数据传输对DSP处理时间的占用,使得在同样硬件平台上跟踪通道数由44个提高到96个,满足了项目设计的要求。 《GNSS接收机中数据传输优化方法设计与应用》 全球导航卫星系统(GNSS)接收机技术在近年来取得了显著进步,特别是在北斗、伽利略和Glonass系统的发展推动下,多模多频接收机成为了主流。这不仅增加了接收机的通道数量,也对数据传输效率提出了更高的要求。本文在定制的FPGA+DSP硬件平台上,通过利用DSP芯片的快速直接存储器访问(QDMA)功能,成功地解决了这一问题。 传统的GNSS接收机在处理大量数据时,由于数据传输间隔的无效时间,会占用大量的DSP处理时间。QDMA技术的应用巧妙地消除了这一间隔,实现了卫星信号处理和数据传输的并行化。这种优化使得在相同的硬件环境下,接收机的跟踪通道数从44个大幅提升到96个,大大提升了接收机的工作效率,满足了多模多频接收机的设计需求。 接收机的硬件架构包括全频段天线、射频通道、A/D转换器、FPGA和DSP。其中,FPGA负责导航信号的捕获和相关运算,而DSP则执行环路更新和定位解算任务。每个通道内部包含了五路复相关器,以适应不同信号类型的需求。针对无导频支路的信号,部分组件如数据解调器和IQ切换单元可以被省略,以减少不必要的资源消耗。 在数据传输分析中,发现传统异步模式的数据传输存在效率瓶颈,主要体现在数据访问的无效时间上。通过改进通信模式,利用EIMF总线的同步模式,显著提高了数据传输速率,从而减少了DSP处理时间的占用。通过计算,可以得出优化后的数据传输速率足以支持更多的跟踪通道,提升了接收机的整体性能。 该文提出的优化方法有效地提升了GNSS接收机的数据传输效率,适应了多模多频接收机的高性能需求。这一技术创新对于未来GNSS接收机的设计和开发提供了重要的参考,有助于推动整个导航卫星系统领域的技术进步。
2025-06-26 20:17:03 80KB GNSS接收机 通道数量 数据传输
1
GNSS 多星多频数据预处理与质量检测(2025国赛选题二)训练数据
2025-06-21 12:21:48 4KB 测绘程序设计
1
GNSS Master安卓模拟定位软件,可通过USB,COM,Bluetooth LE等途径获取GPS模块的经纬度。
2025-06-21 09:19:13 9.93MB GPS GNSS
1
GNSS原理及其应用期末重点资料(成信)
2025-06-15 13:43:44 1.28MB gnss
1
简易实现测绘程序设计大赛试题:GNSS 多星多频数据预处理与质量检测(2025国赛选题二)-完整源码及测试数据
2025-06-12 21:06:47 90KB
1