弱和半监督语义分割的反专业操作归因 输入图像 初始CAM 对抗式攀登的连续地图 针对弱和半监督语义分割的反职业性操纵归因的实现,李贞博,金恩吉和孙大阳,CVPR2021。[] 安装 我们请参考的官方实现。 该存储库已在Ubuntu 18.04上经过测试,并使用Python 3.6,PyTorch 1.4,pydensecrf,scipy,chaniercv,imageio和opencv-python。 用法 步骤1.准备数据集 下载PASCAL VOC 2012基准: 。 步骤2.准备经过预先训练的分类器 本文使用的预训练模型: 。 您还可以根据训练自己的分类器。 步骤3.获得PASCAL VOC train_aug图像的伪地面真伪蒙版并对其进行评估 bash get_mask_quality.sh 步骤4.训练语义分割网络 要训​​练DeepLab-v2,我们参考 。 但是,此仓
2023-12-28 09:12:04 2.68MB cvpr2021 Python
1
半监督学习机制下的说话人辨认算法 半监督学习在入侵检测系统中的应用 半监督学习综述 基于半监督学习的眉毛图像分割方法 基于半监督学习的网络流量分类 基于核策略的半监督学习方法 一种基于半监督学习的多模态Web查询精化方法 有关半监督学习的问题及研究
2023-09-14 15:35:21 2.96MB 半监督 监督 部分标记 标记
1
通过对几种典型聚类算法的分析和比较,提出了一种新的聚类算法,基于扩展约束的半监督谱聚类算法,简称CE-SSC。这种算法扩展了已知约束集,通过密度敏感距离改变样本点的相似关系,结合半监督谱聚类进行聚类。在UCI基准集上的仿真实验结果证明,基于扩展约束的半监督谱聚类算法具有良好的聚类效应。
2023-03-19 23:23:13 520KB 论文研究
1
空气环境问题越发成为人们关注的焦点.除了工厂排放的各种废气,私家车的普及都导致了当前令人担忧的空气环境状况.国家相关部门也开始加大对空气环境的治理,提出了环境质量网格化监测的相关政策.在此背景下,市场涌现出很多微型监测仪器,但由于自身内部的传感器精准度不够,存在数据偏差的问题.为了解决这一问题,本文通过利用神经网络技术中的长短期记忆网络(Long Short-Term Memory,LSTM)模型结合半监督学习方法,达到提高监测数据的精准度的目的.通过与其它模型进行对比分析,该方法达到了一定的效果.
1
SimCLR-视觉表示形式对比学习的简单框架 消息! 我们发布了SimCLR的TF2实现(以及TF2中的转换后的检查点),它们位于。 消息! 新增了用于Colabs,请参见。 SimCLR的插图(来自 )。 SimCLRv2的预训练模型 我们在这里开源了总共65个经过预训练的模型,与论文的表1中的模型相对应: 深度 宽度 SK 参数(M) 金融时报(1%) FT(10%) FT(100%) 线性评估 监督下 50 1倍 错误的 24 57.9 68.4 76.3 71.7 76.6 50 1倍 真的 35 64.5 72.1 78.7 74.6 78.5 50 2倍 错误的 94 66.3 73.9 79.1 75.6 77.8 50 2倍 真的 140 70.6 77.0 81.3 77.7 79.3 101 1
1
增长速度 通过有效的锚图正则化可扩展的半监督学习 BibTeX: @article {wang2016scalable, title = {通过有效的锚图正则化可扩展的半监督学习}, 作者= {王蒙,符和富,魏杰和郝,石杰和陶,大成和吴信东}, journal = {IEEE知识和数据工程交易}, 音量= {28}, 数字= {7}, pages = {1864--1877}, 年= {2016}, Publisher = {IEEE}}
2023-03-06 15:45:01 299KB MATLAB
1
Matlab的耳语PNU学习 以下论文的MATLAB代码: “基于来自阳性和未标记数据的分类的半监督分类”,ICML 2017。 “基于正无标记学习的半监督AUC优化”,MLJ 2018。 也可以看看 如果您需要Python代码,请访问。
2023-02-24 19:37:28 30KB 系统开源
1
压缩包内涵2022数学建模C题全问题解答,有图有代码。一手资源,值得拥有。
1
半监督分层递归图神经网络用于城市范围内的停车位可用性预测 这是SHARE体系结构的Pytorch实现,如论文《。 如果您在研究中利用SHARE模型,请引用以下内容: @article{zhang2019semi, title={Semi-Supervised Hierarchical Recurrent Graph Neural Network for City-Wide Parking Availability Prediction}, author={Zhang, Weijia and Liu, Hao and Liu, Yanchi and Zhou, Jingbo and Xiong, Hui}, booktitle={Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligen
1