AdvCAM:针对弱和半监督语义细分的反职业性归因(CVPR 2021)

上传者: 42099942 | 上传时间: 2023-12-28 09:12:04 | 文件大小: 2.68MB | 文件类型: ZIP
弱和半监督语义分割的反专业操作归因 输入图像 初始CAM 对抗式攀登的连续地图 针对弱和半监督语义分割的反职业性操纵归因的实现,李贞博,金恩吉和孙大阳,CVPR2021。[] 安装 我们请参考的官方实现。 该存储库已在Ubuntu 18.04上经过测试,并使用Python 3.6,PyTorch 1.4,pydensecrf,scipy,chaniercv,imageio和opencv-python。 用法 步骤1.准备数据集 下载PASCAL VOC 2012基准: 。 步骤2.准备经过预先训练的分类器 本文使用的预训练模型: 。 您还可以根据训练自己的分类器。 步骤3.获得PASCAL VOC train_aug图像的伪地面真伪蒙版并对其进行评估 bash get_mask_quality.sh 步骤4.训练语义分割网络 要训​​练DeepLab-v2,我们参考 。 但是,此仓

文件下载

资源详情

[{"title":"( 36 个子文件 2.68MB ) AdvCAM:针对弱和半监督语义细分的反职业性归因(CVPR 2021)","children":[{"title":"AdvCAM-main","children":[{"title":"step","children":[{"title":"eval_sem_seg.py <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"make_sem_seg_labels.py <span style='color:#111;'> 3.33KB </span>","children":null,"spread":false},{"title":"make_cocoann.py <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false},{"title":"cam_to_ir_label.py <span style='color:#111;'> 2.64KB </span>","children":null,"spread":false},{"title":"make_ins_seg_labels.py <span style='color:#111;'> 6.37KB </span>","children":null,"spread":false},{"title":"eval_cam.py <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"pycococreatortools.py <span style='color:#111;'> 4.52KB </span>","children":null,"spread":false},{"title":"eval_ins_seg.py <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"train_cam.py <span style='color:#111;'> 3.56KB </span>","children":null,"spread":false},{"title":"train_irn.py <span style='color:#111;'> 5.24KB </span>","children":null,"spread":false},{"title":"make_cam.py <span style='color:#111;'> 2.94KB </span>","children":null,"spread":false}],"spread":false},{"title":"requirements.txt <span style='color:#111;'> 149B </span>","children":null,"spread":false},{"title":"get_seed_quality.sh <span style='color:#111;'> 113B </span>","children":null,"spread":false},{"title":"gradCAM.py <span style='color:#111;'> 3.11KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"get_mask_quality.sh <span style='color:#111;'> 217B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"obtain_CAM_masking.py <span style='color:#111;'> 7.73KB </span>","children":null,"spread":false},{"title":"demo","children":[{"title":"2008_004430_noreg_c_idx_0_iter_0.jpg <span style='color:#111;'> 18.10KB </span>","children":null,"spread":false},{"title":"2008_004430_gif.gif <span style='color:#111;'> 2.07MB </span>","children":null,"spread":false},{"title":"2008_004430.jpg <span style='color:#111;'> 68.22KB </span>","children":null,"spread":false}],"spread":true},{"title":"net","children":[{"title":"resnet50_irn.py <span style='color:#111;'> 8.41KB </span>","children":null,"spread":false},{"title":"resnet50_cam.py <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false},{"title":"resnet50.py <span style='color:#111;'> 3.93KB </span>","children":null,"spread":false}],"spread":true},{"title":"misc","children":[{"title":"imutils.py <span style='color:#111;'> 8.07KB </span>","children":null,"spread":false},{"title":"pyutils.py <span style='color:#111;'> 2.54KB </span>","children":null,"spread":false},{"title":"torchutils.py <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false},{"title":"indexing.py <span style='color:#111;'> 5.57KB </span>","children":null,"spread":false}],"spread":true},{"title":"voc12","children":[{"title":"train_aug.txt <span style='color:#111;'> 124.01KB </span>","children":null,"spread":false},{"title":"test.txt <span style='color:#111;'> 17.06KB </span>","children":null,"spread":false},{"title":"dataloader.py <span style='color:#111;'> 9.13KB </span>","children":null,"spread":false},{"title":"make_cls_labels.py <span style='color:#111;'> 1007B </span>","children":null,"spread":false},{"title":"train.txt <span style='color:#111;'> 17.16KB </span>","children":null,"spread":false},{"title":"val.txt <span style='color:#111;'> 16.98KB </span>","children":null,"spread":false},{"title":"cls_labels.npy <span style='color:#111;'> 2.32MB </span>","children":null,"spread":false}],"spread":true},{"title":"run_sample.py <span style='color:#111;'> 6.39KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明