[{"title":"( 35 个子文件 2.98MB ) simclr:SimCLRv2-大型自我监督模型是强大的半监督学习者","children":[{"title":"simclr-master","children":[{"title":"model_util.py <span style='color:#111;'> 6.65KB </span>","children":null,"spread":false},{"title":"lars_optimizer.py <span style='color:#111;'> 5.90KB </span>","children":null,"spread":false},{"title":"data_util.py <span style='color:#111;'> 17.62KB </span>","children":null,"spread":false},{"title":"imagenet_subsets","children":[{"title":"1percent.txt <span style='color:#111;'> 254.22KB </span>","children":null,"spread":false},{"title":"10percent.txt <span style='color:#111;'> 2.48MB </span>","children":null,"spread":false}],"spread":true},{"title":"data.py <span style='color:#111;'> 6.17KB </span>","children":null,"spread":false},{"title":"tf2","children":[{"title":"lars_optimizer.py <span style='color:#111;'> 6.17KB </span>","children":null,"spread":false},{"title":"data_util.py <span style='color:#111;'> 17.71KB </span>","children":null,"spread":false},{"title":"data.py <span style='color:#111;'> 3.99KB </span>","children":null,"spread":false},{"title":"objective.py <span style='color:#111;'> 4.91KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 10.35KB </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 24.01KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 31B </span>","children":null,"spread":false},{"title":"colabs","children":[{"title":"finetuning.ipynb <span style='color:#111;'> 434.89KB </span>","children":null,"spread":false},{"title":"distillation_self_training.ipynb <span style='color:#111;'> 381.24KB </span>","children":null,"spread":false},{"title":"imagenet_results.ipynb <span style='color:#111;'> 25.90KB </span>","children":null,"spread":false},{"title":"load_and_inference.ipynb <span style='color:#111;'> 387.25KB </span>","children":null,"spread":false}],"spread":false},{"title":"metrics.py <span style='color:#111;'> 2.92KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 9.51KB </span>","children":null,"spread":false},{"title":"resnet.py <span style='color:#111;'> 25.44KB </span>","children":null,"spread":false}],"spread":false},{"title":"objective.py <span style='color:#111;'> 4.78KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 9.20KB </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 13.98KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 76B </span>","children":null,"spread":false},{"title":"colabs","children":[{"title":"finetuning.ipynb <span style='color:#111;'> 393.13KB </span>","children":null,"spread":false},{"title":"distillation_self_training.ipynb <span style='color:#111;'> 407.10KB </span>","children":null,"spread":false},{"title":"intriguing_properties","children":[{"title":"randbits_mnist.ipynb <span style='color:#111;'> 71.29KB </span>","children":null,"spread":false},{"title":"generalized_contrastive_loss.ipynb <span style='color:#111;'> 5.70KB </span>","children":null,"spread":false},{"title":"digits_on_tf_flowers.ipynb <span style='color:#111;'> 627.32KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 319B </span>","children":null,"spread":false}],"spread":true},{"title":"load_and_inference.ipynb <span style='color:#111;'> 360.43KB </span>","children":null,"spread":false}],"spread":true},{"title":"CONTRIBUTING.md <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 13.22KB </span>","children":null,"spread":false},{"title":"resnet.py <span style='color:#111;'> 28.94KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]