本文为读文章笔记,受所学所知限制,如有出错,恭请指正。 A Simple Framework for Contrastive Learning of Visual Representations 作者: Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton 本文提出一种简洁有效的设计的无监督设计,并且以7%的margin刷新了SOTA。 摘要直译:这篇文章提出了SimCLR, 一种简单的、用于视觉表征对比学习的框架。作者们简化了最近刚提出的对比自监督学习算法,并且不需要特别的架构或者J记忆库。为了探究是什么使得对比预测
2023-02-05 23:33:47 227KB al ar AS
1
自我监督学习(SSL) 文件 论文2021 RGB-D显着目标检测的自监督表示学习() 通过自我监督的多任务学习来学习特定于形式的表示形式以进行多模态情感分析()() 理解无对比对的自我监督学习动力学()() 多视角的自我监督学习。()( ICLR 2021 ) 与差异的对比:带有噪声标签的学习的自我监督式预训练。()( ICLR 2021 )() 自我监督的可变自动编码器。()( ICLR 2021 ) 自我监督视觉预训练的密集对比学习。()( CVPR 2021 )()() 超越眼界的是:通过提取多模态知识进行自我监督的多目标检测和声音跟踪。()( CVPR 2021 ) AdCo:有效地从自我训练的负面对手中学习无监督表示的对抗性对比。()( CVPR 2021 )() 探索简单的暹罗表示学习。() Barlow Twins:通过减少冗余进行自我监督的学习。()
1