内容概要:本文展示了带有CBAM注意力机制改进的U-Net架构模型的具体实现,使用PyTorch作为深度学习库。文中定义了ChannelAttention(信道注意力)和SpatialAttention(空间注意力)这两个重要子模块来提高模型对特征的理解力。接下来,还描述了网络不同层次之间的下采样、跳跃连接以及最后输出部分所使用的特定操作细节。最后,给出了模型实例化及简单调用的方法,并测试了随机生成的数据样本输出维度验证模型搭建正确无误。 适合人群:本教程主要适用于有一定机器学习或深度学习基础,并初步掌握PyTorch环境配置的相关开发者和技术爱好者,同时也非常适合从事医学影像分析或其他图像处理相关科研工作的专业研究人员用来进行项目实践探索。 使用场景及目标:这个模型可以应用于各种需要精确识别对象轮廓的任务如细胞计数检测、皮肤病灶边界分割等方面;其核心目的就是利用深度卷积神经网络提取图像特征,并借助注意力机制提升特征表达质量从而改善最终预测精度。 其他说明:此项目不仅限于二分类任务,只要调整相应的类别数即能应对多类别的情况,此外还允许用户选择不同的采样方式以适应更多种分辨率的图片处理需求。
2025-04-15 09:44:41 7KB 深度学习 PyTorch 图像分割 U-Net
1
【内容概要】: 本资源包含SAM2(Segment Anything Model 2)图像分割项目的完整跑通版本,压缩包命名为`segment-anything-2.zip`。该项目利用先进的深度学习技术实现高效、精确的图像实例分割。压缩包内含预训练模型权重、配置文件、示例图像、数据处理脚本及详细的README文档,指导用户如何快速部署和运行模型,实现对任意图像的像素级分割。 【适用人群】: 适合计算机视觉领域的研究者、开发者及对图像分割技术感兴趣的技术人员。对于希望将最新图像分割技术应用于实际项目或研究工作的专业人士尤为适用。 【使用场景】: 广泛应用于物体识别、图像分析、医学影像处理、自动驾驶等领域。无论是科研实验、产品原型开发还是实际应用部署,SAM2都能提供强大、灵活的分割解决方案。 【目标】: 旨在为用户提供一套开箱即用的图像分割工具,帮助快速实现从图像到分割掩膜的转换,提升图像分析精度和效率。通过本资源,用户可以轻松掌握SAM2的核心技术和应用方法,加速项目研发进程。
2025-04-12 12:59:45 344.72MB 深度学习 计算机视觉 自动驾驶 图像分割
1
该资源包含基于U-Net模型的医学图像分割任务完整代码及不同注意力机制(如SENet、Spatial Attention、CBAM)下的训练结果。资源实现了数据预处理、模型定义、训练与验证循环,以及结果评估与可视化,提供了详细的实验记录与性能对比(如Accuracy、Dice系数、IoU等关键指标)。代码结构清晰,易于复现和扩展,适用于医学图像分割研究和U-Net模型改进的开发者与研究者参考。 在人工智能领域,图像分割技术一直是一个备受关注的研究方向,特别是在医学图像分析中,精确的图像分割对于疾病的诊断和治疗具有重要的意义。ISIC(International Skin Imaging Collaboration)项目提供了大量的皮肤病医学图像,这对于研究和开发图像分割模型提供了宝贵的资源。UNet作为卷积神经网络(CNN)的一种变体,在医学图像分割领域表现出了优异的性能,尤其是它的结构特别适合小样本学习,并且能够捕捉图像的上下文信息。 本研究利用UNet模型对ISIC提供的皮肤病医学图像进行了分割,并在此基础上加入了注意力机制,包括SENet(Squeeze-and-Excitation Networks)、CBAM(Convolutional Block Attention Module)等,以进一步提升模型性能。注意力机制在深度学习中的作用是模拟人类视觉注意力,通过赋予网络模型关注图像中重要特征的能力,从而提高任务的准确性。SENet通过调整各个特征通道的重要性来增强网络的表现力,而CBAM则更加细致地关注到特征的二维空间分布,为网络提供了更加丰富和准确的注意力。 研究结果表明,在引入了这些注意力机制后,模型的分割准确率达到了96%,这显著高于没有使用注意力机制的原始UNet模型。这样的成果对于医学图像的精确分割具有重要的意义,能够帮助医生更准确地识别和分析病灶区域,从而为疾病的诊断和治疗提供科学依据。 本资源提供了一套完整的医学图像分割任务代码,涵盖了数据预处理、模型定义、训练与验证循环、结果评估和可视化等关键步骤。代码结构设计清晰,方便开发者复现和对模型进行扩展,不仅对医学图像分割的研究人员有帮助,同时也对那些想要深入学习图像分割的AI爱好者和学生有着极大的教育价值。 通过对比不同注意力机制下的训练结果,研究者可以更深入地理解各种注意力机制对模型性能的具体影响。实验记录详细记录了各个模型的关键性能指标,如准确率(Accuracy)、Dice系数、交并比(IoU)等,这些都是评估分割模型性能的常用指标。通过这些指标,研究者不仅能够评估模型对图像分割任务的整体性能,还能够从不同维度了解模型在各个方面的表现,从而为进一步的模型优化提供指导。 这份资源对于那些希望通过实践来学习和深入理解医学图像分割以及U-Net模型改进的研究人员和开发人员来说,是一份宝贵的资料。它不仅包含了实现高精度医学图像分割模型的代码,还提供了如何通过引入先进的注意力机制来提升模型性能的实践经验。
2025-04-06 19:24:08 440.34MB UNet 注意力机制
1
**图像分割:Pytorch实现UNet++进行医学细胞分割** 图像分割是计算机视觉领域中的一个核心任务,它涉及将图像划分为多个具有不同语义意义的区域或对象。在医学成像中,图像分割尤其重要,因为它可以帮助医生识别和分析病灶、细胞结构等。PyTorch是一个流行的深度学习框架,其强大的灵活性和易用性使其成为实现复杂网络结构如UNet++的理想选择。 **UNet++简介** UNet++是一种改进的UNet架构,由Zhou等人于2018年提出,旨在解决UNet在处理重叠边界区域时的局限性。UNet++通过引入一系列密集的子网络连接,提高了特征融合的效率,从而在像素级别的预测上表现出更优的性能。这种设计特别适合对细胞、组织等微小结构的高精度分割。 **PyTorch实现** 在PyTorch中实现UNet++通常包括以下几个关键步骤: 1. **数据集处理**(dataset.py):你需要准备训练和验证数据集,这通常包括预处理图像和相应的标注图。`dataset.py`中会定义数据加载器,以批处理的方式提供图像和标签。 2. **模型结构**(archs.py):UNet++的结构由编码器(通常是预训练的卷积神经网络如ResNet)和解码器组成,它们之间通过跳跃连接和密集子网络连接。`archs.py`文件将定义UNet++的网络结构。 3. **训练过程**(train.py):在`train.py`中,你会设置训练参数,如学习率、优化器、损失函数(例如Dice损失或交叉熵损失)、训练迭代次数等,并实现训练循环。 4. **验证与评估**(val.py):验证脚本`val.py`用于在验证集上评估模型性能,通常会计算一些度量标准,如Dice系数或IoU(交并比),以衡量分割结果的质量。 5. **辅助函数**(losses.py, metrics.py, utils.py):这些文件包含损失函数实现、评估指标和一些通用工具函数,如保存模型、可视化结果等。 6. **命令行参数**(cmd.txt):`cmd.txt`可能包含运行训练或验证脚本时的命令行参数,比如指定设备(GPU/CPU)、数据路径等。 7. **开发环境配置**(.gitignore, .vscode):`.gitignore`文件定义了在版本控制中忽略的文件类型,`.vscode`可能是Visual Studio Code的配置文件,用于设置代码编辑器的偏好。 在实际应用中,你还需要考虑以下几点: - **数据增强**:为了增加模型的泛化能力,通常会在训练过程中使用数据增强技术,如旋转、翻转、缩放等。 - **模型优化**:根据任务需求调整网络结构,例如添加更多层、调整卷积核大小,或者采用不同的损失函数来优化性能。 - **模型部署**:训练完成后,将模型部署到实际应用中,可能需要将其转换为更轻量级的形式,如ONNX或TensorRT,以适应硬件限制。 通过理解并实现这个项目,你可以深入掌握基于PyTorch的深度学习图像分割技术,尤其是UNet++在医学细胞分割领域的应用。同时,这也会涉及到数据处理、模型构建、训练策略和性能评估等多个方面,对提升你的深度学习技能大有裨益。
2025-04-05 10:29:58 40.38MB pytorch unet 图像分割
1
每年有超过 400,000 例新发肾癌病例,手术是其最常见的治疗方法。由于肾脏和肾脏肿瘤形态的多样性,目前人们对肿瘤形态如何与手术结果相关 ,以及开发先进的手术计划技术 非常感兴趣。自动语义分割是这些工作的一个很有前途的工具,但形态异质性使其成为一个难题。 这一挑战的目标是加速可靠的肾脏和肾脏肿瘤语义分割方法的发展。我们已经为 300 名在我们机构接受部分或根治性肾切除术的独特肾癌患者的动脉期腹部 CT 扫描生成了真实语义分割。其中 210 个已发布用于模型训练和验证,其余 90 个将保​​留用于客观模型评估。
2025-04-01 19:37:00 33.12MB 计算机视觉 unet python 图像分割
1
ISIC 2017皮肤病变图像分割公开数据集,内涵1500张训练图片,1500张训练图片标签,650张测试图片,650张测试图片标签(也可自行划分训练集与测试集)。科研小白初入图像分割领域必备数据集,深度学习模型常用!!!!小白必要数据集!!!
2024-09-28 15:40:55 20.2MB 数据集
1
1、具体要求:完成实验并提交实验报告。 2、实验内容:在Matble中使用分水岭算法对图像进行分割处理。 3、实验原理:分水岭变换的思想源于地形学,它将图像看作是地形上被水覆盖的自然地貌,图像中每一灰度值表示该店海拔高度,其每一局部极小值及其影响区域称为集水盆,而集水盆边界为分水岭。 在图像分割中,分水岭变换是指将原图变换成一个标记图像,其所有属于同一盆中的点被赋予同一标记,并用特殊标记来标识分水岭上的点。 分水岭算法是基于形态学分割的算法,利用形态学处理函数,不仅能达到有效分割图像的目的,而且能消除过分个现象。 分为若干类别的处理过程。传统的遥感影像分类方法忽略了影像的空间结构信息,精度不是很高。特别是上个世纪90年代以来,高分辨率遥感影像(如IKONOS,SPOT5,COSMOS,OrbView,QuickBird等)被广泛应用,景观的结构、纹理等就表现得更加清楚。遥感影像的纹理特征提取已经成为一种重要的提高遥感影像分类精度的手段。目前,遥感影像纹理分析方法主要有自相关函数分析法、行程长度分析法、灰度共生矩阵分析法、傅立叶频谱分析法、小波分析法及分形分析法等 《基于Matlab的遥感图像分水岭算法详解》 图像分割是数字图像处理中的核心环节,对于理解和解析遥感图像至关重要。本篇文章主要探讨如何使用Matlab中的分水岭算法对遥感图像进行有效的分割处理,以提高遥感影像分类的精度。 分水岭算法是一种基于形态学的图像分割方法,它的灵感来源于地形学。在这一理论框架下,图像被视为地形,其中的每个灰度值代表不同的海拔高度。图像中的局部最小值及其邻域被称为集水盆地,而这些盆地之间的边界即为分水岭。在实际应用中,分水岭变换将原始图像转化为标记图像,同一盆地内的像素点赋予相同的标记,分水岭点则用特殊的标记区分。这种算法不仅能有效地分割图像,还能避免过度分割的问题。 遥感图像分割在高分辨率遥感影像广泛应用的背景下显得尤为重要。传统的分类方法往往忽视了影像的空间结构信息,导致分类精度不高。随着IKONOS、SPOT5、COSMOS等高分辨率卫星影像的普及,对影像的纹理特征提取成为提高分类精度的关键。常见的纹理分析方法包括自相关函数分析、行程长度分析、灰度共生矩阵分析、傅立叶频谱分析、小波分析以及分形分析等。 在Matlab环境中,实施分水岭算法通常涉及以下步骤: 1. 图像预处理:将彩色图像转化为灰度图像,以减少计算复杂度。这可以通过`rgb2gray`函数实现。 2. 直接应用分水岭变换:通过`watershed`函数对灰度图像进行分水岭变换。然而,直接应用可能会导致过度分割,例如花坛、广场、水塘等地物被过分划分。 3. 改进的分水岭算法:为解决过度分割问题,需要增强图像对比度。这可以通过构造结构元素(如圆盘形状的结构元素`strel('disk',15)`),然后应用顶帽变换(`imtophat`)和底帽变换(`imbothat`)来实现。接着,使用`imsubtract`和`imadd`函数结合这两种变换的结果,以增强物体和背景的对比度。再通过`imcomplement`函数增强谷点,最后使用`imextendedmin`和`imimposemin`检测并标记谷点,从而进行更精确的分水岭变换。 通过以上步骤,可以实现对遥感图像的精细化分割,提高对地物识别的准确性和清晰度。在实验中,应确保使用合适的Matlab版本(如本例中的Matlab7.0),并在适宜的操作系统环境下(如Windows 7)进行。同时,实验报告的撰写也是重要的一环,它能展示实验过程、结果和理解。 分水岭算法是遥感图像处理中的有力工具,通过Matlab的实现,我们可以有效地提取和分析图像信息,为遥感影像的分类和分析提供强大的支持。理解并掌握这一算法,对于提升遥感数据的应用价值具有深远的意义。
2024-09-05 11:11:34 3.05MB matlab
1
《VC++2008图像增强分割程序》是一款基于Visual C++ 2008编写的软件,主要用于图像处理中的图像增强和图像分割任务。在图像分析与理解的课程学习中,这样的程序作为作业,可以帮助学生深入理解图像处理的基本原理和技术,并通过实际操作提升编程技能。 图像增强是图像处理中的一个重要环节,它主要目的是改善图像的视觉效果,提高图像的可读性和后续处理的性能。在这个程序中,采用了线性变换算法来实现图像增强。线性变换通常包括直方图均衡化、灰度拉伸等方法,通过调整图像像素的灰度级分布,使图像的亮部和暗部细节更加明显,从而改善图像的整体对比度。例如,直方图均衡化可以扩大图像的灰度动态范围,使图像的亮区和暗区都得到充分展现,这对于增强图像的视觉效果非常有效。 图像分割则是将图像中具有不同特征或意义的区域分离出来,它是图像分析和理解的基础步骤。Sobel算子是一种常用的边缘检测算法,它属于梯度算子的一种,能有效地检测图像中的边缘。Sobel算子通过计算图像的水平和垂直方向的梯度强度,然后进行合成,找出梯度值较大的像素点,这些点通常对应于图像的边缘。该程序运用Sobel算子对图像进行处理,可以准确地识别并标记出图像的边缘,为后续的图像分析提供基础数据。 在《vc++2008图像增强分割程序》中,包含的文件"iauZuoye.sln"是一个Visual Studio解决方案文件,用于管理和构建整个项目。"pic"可能是一个包含待处理图像的文件夹,用户可以将自己感兴趣的图像放入其中,然后通过程序进行处理。"iauZuoye"可能是源代码文件,包含了实现图像增强和分割算法的具体代码。通过阅读和分析这个源代码,学习者可以深入理解线性变换算法和Sobel算子的工作原理,以及如何在VC++环境下实现它们。 这个程序不仅是一个实用的图像处理工具,更是一个生动的教学案例,对于学习和掌握VC++编程、图像处理理论以及实际应用技巧都有着极大的帮助。通过实践这个程序,学生能够巩固理论知识,提升编程技能,为未来在图像分析与理解领域进行更深入的研究打下坚实的基础。
2024-07-15 16:57:56 53KB vc++ 图像增强 图像分割
1
现成源文件,更改图像可直接使用,VC++的源代码比较多,如果有自己编程的可以只取其中一部分即可。
2024-07-15 16:54:19 2.65MB 图像分割
1
在图像处理领域,VC++是一种常用的编程语言,它结合了强大的MFC(Microsoft Foundation Classes)库,能够方便地实现各种图像处理任务。本项目聚焦于图像的分割与灰度处理,利用GDI(Graphics Device Interface)图形设备接口,这是一种Windows操作系统下的标准绘图工具,可以高效地处理图像数据。 我们要理解“图像分割”。图像分割是图像分析的关键步骤,它将图像划分为多个区域或对象,每个区域具有相似的特性,如颜色、纹理或亮度。在VC++中,可以使用不同的算法来实现,如阈值分割、边缘检测(如Canny算法)、区域生长等。这个项目可能采用了阈值分割,通过设定一个阈值来区分图像中的前景和背景,从而达到分割目的。 接着,是“灰度处理”。灰度处理是将彩色图像转换为单色图像的过程,每个像素由一个灰度级表示,通常是一个0到255的整数值,代表从黑色到白色的渐变。在VC++中,可以使用OpenCV库或者其他自定义函数来实现灰度转换,例如将RGB三通道颜色值取平均得到灰度值。 在这个项目中,代码会统计出黑色像素点的数量。这可能是通过遍历图像矩阵,检查每个像素的灰度值是否低于某个阈值(如0,代表黑色),然后计数。这个统计信息对于分析图像的构成或者进行后续的图像分析很有用。 接下来,我们讨论绘制出的4幅图: 1. 原图:保持图像原始的颜色和亮度信息,用于对比处理后的效果。 2. 分割图:显示了图像分割的结果,不同的区域可能有不同的颜色,便于观察物体或区域的分离。 3. 灰度分割图:结合了图像分割和灰度处理,所有像素只有一维的灰度信息,但仍然保留了分割的效果。 4. 比例图:可能是图像中黑色像素点的分布比例,或者用图形表示黑色像素点占总像素的比例,帮助理解图像的黑白分布情况。 GDI的使用简化了这些图像的绘制过程,开发者可以通过创建位图对象、选择画刷和画笔、设置颜色、以及调用DrawBitmap等函数来绘制图像和图形。 通过下载和学习此源代码,你可以深入理解VC++如何结合GDI进行图像处理,包括基本的图像读取、像素操作、图像显示,以及如何实现特定的图像处理算法。这对于提升你的图像处理技能,特别是使用VC++和GDI进行开发的能力,有着显著的帮助。同时,这也是一个很好的实践案例,教你如何将理论知识应用到实际项目中,进一步巩固和扩展你的编程技巧。
2024-07-15 16:50:40 653KB VC++ 图像分割 灰度处理
1