该任务分为三个阶段,这是第一个阶段,三个阶段分别是: 1. 第一阶段分割出腹部图像中的肝脏,作为第二阶段的ROI(region of interest) 2. 第二阶段利用ROI对腹部图像进行裁剪,裁剪后的非ROI区域变成黑色,作为该阶段输入,分割出肝脏中的肿瘤。 3. 第三阶段用随机场的后处理方法进行优化。 在计算机视觉领域,图像分割技术一直是研究的热点,尤其是在医学图像分析中,它能够有效地识别出图像中的特定区域或对象,这对于疾病的诊断和治疗具有重要的意义。本文所涉及的内容,即是在这个大背景下的一次尝试,旨在通过基于U-Net的深度学习模型,实现对肝脏肿瘤的自动分割。 U-Net模型,作为一种专门针对医学图像分割设计的卷积神经网络,其结构特别适合处理具有较少样本的数据集。它通过一个收缩路径(用于捕获上下文)和一个对称的扩展路径(用于精确定位)来实现特征的抽象和重建。该模型能够有效地处理图像分割任务,尤其是在数据集较少的情况下,相比于传统方法,U-Net可以更好地保持边界信息,从而提高分割的精度。 在本任务中,分为三个阶段来完成肝脏肿瘤的分割工作。第一阶段的任务是首先识别并分割出腹部图像中的肝脏区域。这是因为肝脏肿瘤通常出现在肝脏内部,因此首先确定肝脏的精确位置,对于后续肿瘤的准确分割至关重要。此阶段可以看作是对感兴趣区域(ROI)的定位,它为后续的分析打下了坚实的基础。 第二阶段则是在第一阶段的基础上,以肝脏区域为ROI进行图像的裁剪,使得裁剪后的图像主要包含肝脏区域,而将非ROI区域设置为黑色背景。这种裁剪操作有助于减少计算量,同时使得模型更加聚焦于肝脏及其内部的肿瘤。在这一阶段,模型需要对裁剪后的图像进行分析,识别并分割出肝脏中的肿瘤。 第三阶段引入了随机场的后处理方法来进一步优化分割结果。随机场模型能够提供像素级的分类,通过考虑像素之间的空间关系,对分割结果进行平滑和细化。这一步骤可以有效地减少分割中的误差和噪声,提高最终的分割质量。 整个项目不仅包含了深度学习模型的构建和训练,还包括数据的准备、处理以及后处理算法的应用,是一个典型的图像分割工作流程。通过这个项目,我们可以看到如何使用深度学习技术解决实际的医学图像分析问题,以及如何通过多个阶段的合作来逐步提高分割任务的精确度。 在实现上述任务的同时,本项目还提供了相应的数据和代码。数据方面,包含了用于训练和测试U-Net模型的医学图像集;代码方面,则是用Python编写的实现U-Net模型的程序,还包括数据预处理、模型训练、测试以及后处理等多个环节的代码。这些资源对于学习和研究计算机视觉,特别是医学图像分割的人员来说,是非常有价值的参考和工具。 本项目展示了利用U-Net模型进行肝脏肿瘤分割的完整流程,从数据的准备到模型的训练和优化,每一个步骤都是对实现精准医学图像分析的重要贡献。通过这一案例,我们可以深入理解深度学习在计算机视觉特别是医学图像处理中的应用,以及如何通过多阶段处理来提高模型的性能。
2025-12-30 14:59:43 880.85MB 计算机视觉 python 图像分割 unet
1
图像分割是数字图像处理中的核心问题之一,它是将图像转换成更易于理解和分析的形式的过程,该过程涉及将图像分割成多个组成部分,使图像中的每个部分都属于一个单独的类别或对象。在交通视频监测领域,图像分割尤为重要,因为它的目标是分离出图像中的前景(移动对象)和背景,以便对交通中的车辆和行人的运动数据进行进一步分析。 图像分割技术主要有基于阈值的方法、边缘检测法、区域生长法、分水岭法等。阈值化方法因其简单高效而被广泛使用。直方图是一种重要的图像分析工具,它能显示出图像中各个灰度级的像素数量。在图像分割的背景下,直方图可以用来确定图像中的前景和背景之间的阈值。传统上,如果直方图呈现双峰形状,那么两个峰之间的谷底可以作为阈值点,用以区分背景和前景。但是,当图像受到光照变化或噪声的影响时,直方图可能不会呈现双峰形状,这时候传统的双峰谷底分割方法就无法应用。 针对差图像的直方图可能呈现递减形状的情况,本篇文章提出了一种实时自适应阈值分割方法。该方法首先对直方图的频率值进行从高到低的排序,以形成一条光滑递减的曲线。然后通过将直方图的最高点和最低点连接起来得到一条直线,从直方图上找到距离这条直线最远的点对应的灰度值,作为分割前景和背景的阈值。这种方法能够更好地适应图像中光照变化和噪声,是一种鲁棒性强的图像分割技术。 该文还提到了在计算过程中可能遇到的计算量大、速度慢的问题。为了解决这个问题,作者提出了一种快速计算最大距离的方法,有效减少了运算中的乘法次数,从而提高算法的执行速度。这种方法不仅提高了分割的准确性,同时也保证了处理的实时性,对实时视频监控中的目标检测与跟踪具有重要意义。 对于进行图像处理和Matlab仿真开发的科研人员,本文所介绍的自适应阈值方法及其快速计算算法具有很高的实用价值和参考意义。通过Matlab的仿真平台,科研人员可以进一步实验和完善这一方法,将其应用于其他图像处理任务,如图像二值化、物体识别和跟踪等,从而提升图像处理系统的性能和准确性。此外,本文作者提供的个人主页和相关链接为读者提供了丰富的Matlab图像处理内容和资源,有助于读者深入学习和实践图像分割及相关技术。文章最后还提供了获取Matlab源码的方式,方便读者在实际操作中运用所学知识。
2025-12-08 09:10:25 9KB
1
内容概要:本文详细记录了DINOv3模型的测试过程,包括预训练模型的下载、环境配置、模型加载方式以及在不同下游任务(如图像分类、目标检测、图像分割)中的应用方法。重点介绍了如何冻结DINOv3的backbone并结合任务特定的头部结构进行微调,同时对比了PyTorch Hub和Hugging Face Transformers两种主流模型加载方式的使用场景与优劣,并提供了显存占用数据和实际代码示例,涵盖推理与训练阶段的关键配置和技术细节。; 适合人群:具备深度学习基础,熟悉PyTorch框架,有一定CV项目经验的研发人员或算法工程师;适合从事视觉预训练模型研究或下游任务迁移学习的相关从业者。; 使用场景及目标:①掌握DINOv3模型的加载与特征提取方法;②实现冻结backbone下的分类、检测、分割等下游任务训练;③对比Pipeline与AutoModel方式的特征抽取差异并选择合适方案;④优化显存使用与推理效率。; 阅读建议:此资源以实操为导向,建议结合代码环境边运行边学习,重点关注模型加载方式、头部设计与训练策略,注意版本依赖(Python≥3.11,PyTorch≥2.7.1)及本地缓存路径管理,便于复现和部署。
2025-11-13 17:29:00 679KB PyTorch 图像分割 目标检测 预训练模型
1
内容概要:本文详细介绍了如何利用U-Net模型实现脑部MRI图像的分割与定位。首先解释了U-Net模型的‘编码器-解码器’架构及其跳跃连接的特点,然后展示了具体的Python代码实现,包括模型构建、数据预处理、训练配置以及结果可视化。文中还讨论了MRI数据的特殊性质,如边缘模糊和对比度低等问题,并提出了相应的解决方案,如百分位截断归一化、弹性变换等数据增强方法。此外,文章探讨了损失函数的选择,推荐使用Dice损失,并引入了混合损失函数以应对类别不平衡问题。最后,提供了训练过程中的一些优化技巧,如动态调整ROI权重、切换优化器等。 适合人群:从事医学图像处理的研究人员和技术开发者,尤其是对深度学习应用于MRI图像分割感兴趣的从业者。 使用场景及目标:适用于需要高精度脑部MRI图像分割的应用场景,如疾病诊断、手术规划等。主要目标是提高分割准确性,特别是在处理边缘模糊和对比度低的医学图像时。 其他说明:文章不仅提供了完整的代码实现,还分享了许多实践经验,帮助读者更好地理解和应用U-Net模型于实际项目中。
2025-11-01 23:44:42 524KB
1
HiFormer:基于CNN和Transformer的医学图像分割方法 HiFormer是一种新颖的医学图像分割方法,它将卷积神经网络(CNN)和Transformer结合,以解决医学图像分割任务中存在的挑战性问题。该方法通过设计了两个多尺度特征表示使用的开创性Swin Transformer模块和基于CNN的编码器,来确保从上述两种表示中获得的全局和局部特征的精细融合。实验结果表明,HiFormer在计算复杂度、定量和定性结果方面优于其他基于CNN、基于变换器和混合方法的有效性。 医学图像分割是计算机视觉中的主要挑战之一,它提供了有关详细解剖所需区域的有价值的信息。这些信息可以极大地帮助医生描述损伤、监测疾病进展和评估适当治疗的需求。随着医学图像分析的日益使用,高精度和鲁棒性的分割变得越来越重要。 卷积神经网络(CNN)具有提取图像特征的能力,已被广泛用于不同的图像分割任务。然而,CNN模型在医学图像分割任务中的性能受到限制,因为它们只能在局部范围内捕获特征,而忽视了长距离依赖关系和全局上下文。 Transformer最初是为了解决这个问题而开发的,但它们无法捕获低级功能。与此相反,它表明,局部和全局功能是至关重要的密集预测,如分割在具有挑战性的上下文中。在本文中,我们提出了HiFormer,这是一种有效地桥接CNN和Transformer用于医学图像分割的新方法。 具体来说,我们设计了两个多尺度特征表示使用的开创性Swin Transformer模块和基于CNN的编码器。为了确保从上述两种表示中获得的全局和局部特征的精细融合。实验结果表明,HiFormer在计算复杂度、定量和定性结果方面优于其他基于CNN、基于变换器和混合方法的有效性。 在近期的研究中,已经开发了一些基于Transformer的方法来解决CNN在医学图像分割任务中的限制。例如,DeiT提出了一种有效的知识蒸馏训练方案,以克服视觉变换器需要大量数据来学习的困难。Swin Transformer和pyramid visionTransformer试图分别通过利用基于窗口的注意力和空间减少注意力来降低视觉变换器的计算复杂度。CrossViT提出了一种新颖的双分支Transformer架构,可提取多尺度上下文信息,并为图像分类提供更细粒度的特征表述。DS-TransUNet提出了一种双分支Swin Transformer,用于在编码器中捕获不同的语义尺度信息,以执行医学图像分割任务。HRViT将多分支高分辨率架构与视觉变换器连接起来,用于语义分割。 然而,这些方法有一些障碍,阻止他们获得更高的性能:1)它们不能在保持特征一致性的同时,捕获全局和局部特征;2)它们需要大量的数据来学习和训练。因此,我们提出了HiFormer,以解决这些问题,并提供了一种更好的医学图像分割方法。 在实验部分,我们在多个医学图像分割数据集上进行了实验,结果表明,HiFormer在计算复杂度、定量和定性结果方面优于其他基于CNN、基于变换器和混合方法的有效性。我们的代码在GitHub上公开,供其他研究者使用和改进。
1
CVC-ClinicDB-612 是一个专为结肠镜图像中息肉分割任务构建的高质量医学影像数据集。该资源包含 612 张真实临床结肠镜图像及其对应的像素级语义分割掩码,涵盖了多种类型和形态的息肉目标,广泛用于医学图像分割、计算机辅助诊断(CAD)和深度学习模型的训练与评估。图像分辨率统一为384×288,所有图像均来自真实临床检查过程,具有良好的代表性与挑战性。本数据集适用于监督学习、迁移学习、数据增强方法验证等研究场景,是结肠息肉自动检测与分割研究中的经典基准数据集之一。
2025-10-24 21:38:14 281.12MB 医学图像分割 深度学习
1
内容概要:本文介绍了一种改进的U-Net神经网络架构——UNetWithInceptionCBAM。该模型融合了Inception模块和CBAM(通道注意力机制和空间注意力机制),增强了对图像特征的捕捉能力。具体来说,Inception模块通过多尺度卷积提取不同尺度的特征,而CBAM则通过对通道和空间维度进行加权,突出重要特征并抑制不重要的特征。网络由编码器(下采样路径)和解码器(上采样路径)组成,每个阶段都包含了DoubleConv或InceptionModule,并应用CBAM进行特征增强。最终通过OutConv输出预测结果。; 适合人群:具备深度学习基础知识,尤其是熟悉PyTorch框架和卷积神经网络的科研人员和工程师。; 使用场景及目标:①医学影像分割任务,如CT、MRI等图像的病变区域检测;②遥感图像处理,如土地覆盖分类、目标检测等;③自然图像分割,如自动驾驶中的道路分割、行人检测等。; 阅读建议:本文提供了详细的代码实现,建议读者在理解U-Net基本原理的基础上,逐步研究Inception模块和CBAM的作用,结合实际数据集进行实验,观察不同组件对模型性能的影响。同时,可以尝试调整参数(如reduction_ratio、kernel_size等),以优化模型效果。
2025-10-22 12:36:03 7KB PyTorch UNet CBAM 深度学习
1
**正文** 多阈值图像分割是计算机视觉领域中一种重要的图像处理技术,广泛应用于医学影像分析、遥感图像处理、模式识别等多个场景。在给定的"多阈值图像分割CPSOGSA Matlab"项目中,核心算法是基于复合粒子群优化算法(Composite Particle Swarm Optimization, CPSOGSA)实现的,这是一种改进的粒子群优化算法,用于解决图像的多级阈值分割问题。 粒子群优化算法(Particle Swarm Optimization, PSO)是受到鸟群觅食行为启发的全局优化方法,其基本思想是通过群体中的粒子相互学习和竞争来寻找最优解。CPSOGSA则在PSO的基础上引入了混沌理论和模拟退火算法,提高了算法的全局搜索能力和收敛速度,以适应复杂多变的多阈值分割任务。 在Matlab环境中,开发者利用其强大的数值计算和图形处理功能,构建了CPSOGSA算法的实现框架。Matlab代码通常包括初始化参数设置、粒子位置和速度更新规则、适应度函数设计、混沌操作和模拟退火策略等部分。适应度函数通常是根据图像分割的质量指标,如Otsu's方法、 entropy、灰度共生矩阵等来定义的。 在这个项目中,用户可以输入待处理的图像,并通过调整CPSOGSA的参数来优化分割效果。这可能包括粒子数量、混沌序列参数、退火温度等。程序将自动进行多次迭代,找到一组合适的阈值,将图像分割为多个等级的区域。分割结果通常会以可视化的方式展示,便于用户直观地评估分割质量。 在实际应用中,多阈值图像分割常用于识别图像中的不同特征区域,例如医学图像中的病灶、遥感图像中的地物分类等。通过CPSOGSA这样的优化算法,可以有效地克服传统固定阈值分割方法的局限性,适应图像的复杂性和不确定性。 "多阈值图像分割CPSOGSA Matlab"项目结合了先进的优化算法和强大的编程工具,为科研人员和工程师提供了一个灵活且高效的图像处理解决方案。通过对Matlab代码的理解和参数调优,用户可以应用于自己的特定图像分割任务,实现更精确的区域划分和目标识别。同时,该项目也为深入研究和改进图像分割算法提供了基础平台。
2025-10-13 14:10:20 102KB matlab
1
样本图:blog.csdn.net/FL1623863129/article/details/144466029 文件放服务器下载,请务必到电脑端资源预览或者资源详情查看然后下载 数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数):2602 标注数量(json文件个数):2602 标注类别数:3 标注类别名称:["claystone","silt","mediumsand"] 每个类别标注的框数: claystone count = 4264 silt count = 4 mediumsand count = 4 使用标注工具:labelme=5.5.0 标注规则:对类别进行画多边形框polygon 重要说明:可以将数据集用labelme打开编辑,json数据集需自己转成mask或者yolo格式或者coco格式作语义分割或者实例分割 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
2025-09-26 21:34:15 407B 数据集
1
在MATLAB环境中实现基于熵的声纳图像分割算法的具体步骤和技术要点。首先读取并灰度化原始声纳图像,然后进行离散余弦变换(DCT)去噪,接着利用Roberts算子进行边缘检测,去除阴影边界,通过阈值定位分离图像背景与前景,去除船舶边界,再经过形态学膨胀操作连接断开的边缘,将去噪和膨胀结果合并,最后采用二维熵分割完成图像分割,并进行后处理优化结果。文中不仅提供了详细的代码实现,还针对每个步骤给出了具体的参数选择依据和注意事项。 适合人群:具有一定MATLAB编程基础的研究人员、工程师以及从事海洋探测、图像处理相关领域的技术人员。 使用场景及目标:适用于需要从声纳图像中提取特定目标的应用场景,如水下考古、海洋测绘等。主要目的是提高声纳图像的目标识别精度,减少噪声干扰,增强图像质量。 其他说明:文中强调了实际操作过程中需要注意的问题,如DCT去噪可能出现的块效应、边缘检测后的形态学操作参数调整、熵阈值的选择等。同时提醒读者可以通过对比各步骤的中间结果来检查和优化算法性能。
2025-09-19 08:41:33 227KB 图像处理 MATLAB 形态学操作
1