使用步态分析进行帕金森氏病检测 对帕金森氏病(PD)患者和对照对象的步态分析已进行分析,以显示PD患者和对照对象的差异。 使用Phisonet的Gaitpdb数据库提供的数据(已在对象的每只脚上使用8个传感器来计算垂直地面反作用力(VGRF)),已使用7个统计函数执行了数据压缩,以获得数据的代表性图像。 统计函数(最小值,最大值,均值,中位数,标准差,偏度和峰度)已用于将超过300万个元组压缩为310个元组。 最后,各种机器学习技术已应用于转换后的数据集,以执行帕金森氏病的检测。 使用Logistic回归,决策树,随机森林,SVM(线性内核),SVM(RBF内核),SVM(多核)和k最近邻居进
1