分享一种强化学习的建模过程,它是将通信当中的资源分配问题建立成强化学习方法,资源分配是指通信网络中,频谱资源、信道、带宽、天线功率等等是有限的,怎么管理这些资源来保证能够通信的同时优化整个网络吞吐量、功耗,这个就是网络资源分配。这里多智能体就是涉及博弈论的思想。
2024-06-26 09:50:15 935KB 强化学习 多智能体 无人机 资源分配
1
基于Multi-Agent的电子信息装备体系作战效能评估方法 本文主要介绍了一种基于Multi-Agent方法的电子信息装备体系作战效能评估方法。该方法通过将多Agent方法应用于电子信息装备体系的评估中,旨在提高电子信息装备体系的作战效能评估的准确性和效率。 首先,本文阐述了电子信息装备体系及体系效能评估的概念,并分析了装备体系评估的主要方法和技术。然后,通过对比分析现有的装备体系效能评估方法的优缺点和适用范围,将多Agent方法引入到电子信息装备体系评估中。 多Agent方法是一种基于分布式人工智能技术的评估方法,它可以模拟电子信息装备体系的复杂行为和交互过程,从而评估电子信息装备体系的作战效能。此方法的优点在于它可以模拟电子信息装备体系的多种作战场景,评估电子信息装备体系的作战效能,同时也可以评估电子信息装备体系的子系统的效能。 在本文中,还介绍了多Agent方法的概念、优缺点和基本结构,并构建了电子信息对抗系统的作战效能度量指标,设计了电子信息对抗系统的作战效能仿真框架,并基于AnyLogic平台进行了仿真验证。 此外,本文还讨论了基于Agent的评估方法在电子信息对抗系统和电子信息装备体系的应用前景。结果表明,基于Agent的评估方法既适用于电子信息对抗系统的作战效能评估,也适用于电子信息装备体系及其子系统的效能评估。 本文提出的基于Multi-Agent方法的电子信息装备体系作战效能评估方法可以提高电子信息装备体系的作战效能评估的准确性和效率,为电子信息装备体系的发展和应用提供了新的思路和方法。 知识点: 1. 电子信息装备体系的概念和分类 2. 装备体系评估的主要方法和技术 3. 多Agent方法的概念、优缺点和基本结构 4. 基于Multi-Agent方法的电子信息装备体系作战效能评估方法 5. 电子信息对抗系统的作战效能度量指标和仿真框架 6. AnyLogic平台在仿真验证中的应用 7. 基于Agent的评估方法在电子信息对抗系统和电子信息装备体系的应用前景
马普里 这是一个多代理项目(commnet ) pytorch用于多代理粒子环境“ simple_spread”( ) 推理: 通讯网: Bicnet: Maddpg: 训练曲线: 如何使用 点安装-r requirements.txt cd MAProj /算法 python ma_main.py --algo maddpg --mode火车 待办事项清单 受过更多地图训练 修复图形内存泄漏 博客链接 https://zhuanlan.zhihu.com/p/143776727
1
Distributed Consensus in Multi-vehicle Cooperative
2023-01-13 11:33:44 10.72MB Distributed Consensus multi-agent
1
A_Dynamic_Network_Simulation_Model_Based_on_Multi-Agent_Systems,希望对大家有用
2022-12-14 15:51:50 3.81MB Transportation
1
Cooperative Control of Multi-Agent Systems 书籍 Frank L. Lewis 多智能体必备书籍 大名鼎鼎的Frank L. Lewis
2022-11-10 20:24:16 12.51MB 多智能体
1
线性多智能体系统的分布式包含控制,温广辉, 胡国强,本文研究了有向通信拓扑下的线性多智能体系统的分布式包含控制问题。为了实现包含控制任务,本文首先设计了一类静态分布式通信协��
2022-10-30 14:26:15 203KB Distributed control containment control
1
软件编程:使用Java+JADE开发多智能体系统教程。
2022-09-17 20:03:30 3.38MB jade
1
人工智人-家居设计-基于Multi--Agent System的智能电网负荷监控系统研究与设计.pdf
2022-07-14 09:04:22 8.03MB 人工智人-家居
人工智人-家居设计-基于Multi-Agent System的智能配电网自愈控制研究.pdf
2022-07-14 09:04:21 3.83MB 人工智人-家居