我们的 CVPR 2019 论文 Distilling Object Detectors with Fine-grained Feature Imitation 的实现 我们提出了一种基于锚点的对象检测模型的通用蒸馏方法,以利用大型教师模型的知识获得增强的小型学生模型,该模型是正交的,可以进一步与量化和剪枝等其他模型压缩方法相结合。 香草知识蒸馏技术的关键观察是预测置信度的类间差异揭示了笨拙的模型如何趋于泛化(例如,当输入实际上是一只狗时,模型将在猫标签上放置多少置信度)。 虽然我们的想法是物体附近特征响应的位置间差异也揭示了检测器倾向于泛化的程度(例如,模型的响应对于不同的近物体锚点位置有何不同)。 我们发布了基于 shufflenet 的检测器和基于VGG11的Faster R-CNN 的提取代码,该代码库实现了基于Faster R-CNN模仿。 检查以获取基于 Shufflene
1
google EfficientDet 算法中文版paper.将高效网络骨架与我们提出的BiFPN 和复合尺度相结合,我们开发了一种新的对象检测器家族,称为高效Det,它始终以比以前的对象检测器更少的参数和FLOP 来获得更好的精度。图和图形显示COCO 数据集上的性能比较。在类似的精度约束下,我们的有效DET使用的FLOP 比YOLOv3 少28 倍,FLOP 比RetinaNet 少30倍,FLOP 比最近基于ResNet 的NAS-FPN 少19 倍。特别是,在单模型和单测试时间尺度下,我们的高效Det-D7 实现了最先进的53.7AP 和52M 参数和325B FLOP,在1.5AP的情况下优于以前最好的检测器,而在4 倍小和使用13 倍少的FLOP。我们的高效DET 在GPU/CPU 上也比以前的检测器快4 倍至11 倍。
1