Deep JSCC图像传输[代码]

上传者: mac99 | 上传时间: 2026-01-23 16:26:15 | 文件大小: 234KB | 文件类型: ZIP
本文介绍了Deep JSCC(深度联合信源信道编码)在无线图像传输中的应用。传统的分离式图像传输方案存在悬崖效应,即在信道条件低于某阈值时性能急剧下降。Deep JSCC通过神经网络联合训练信源信道编码,避免了比特流传输,直接将图像映射为隐含变量z并恢复为输出图像。实验表明,Deep JSCC在低信噪比环境下仍能保持良好性能,克服了悬崖效应,并在中等压缩率和高信噪比下优于传统通信系统。此外,该方案在计算复杂度上也具有一定优势。通过大量数值模拟,Deep JSCC在有限信道带宽和低SNR情况下表现优异,且在所有平均SNR值下均优于传统分离式传输方案。 Deep JSCC图像传输技术是一种将图像编码与信道编码相结合的全新传输方案。在传统图像传输领域中,信源编码与信道编码通常是分离进行的,即首先将图像压缩转换为比特流,再通过信道编码确保这些比特流能够可靠地传输。然而,这种方法在某些情况下会遇到所谓的“悬崖效应”,即在信道条件稍微恶化时,性能会迅速下降,导致接收端无法正确解码图像。 为解决这一问题,研究人员提出了Deep JSCC方法。这种方法运用神经网络技术,将源图像直接映射为一个隐含变量z,这个过程并不生成传统的比特流,而是直接传输z。在接收端,通过神经网络的逆过程可以将隐含变量z恢复成清晰的图像。这一过程的关键在于联合训练信源编码和信道编码,使得整个传输系统能够更加高效地应对各种信道条件。 在研究中,实验者进行了大量的数值模拟来测试Deep JSCC在不同信道条件下的性能。实验结果表明,在低信噪比的环境下,Deep JSCC仍能保持稳定的传输性能,显著减少了传统方案中存在的悬崖效应。此外,在中等压缩率和高信噪比条件下,与传统的分离式传输方案相比,Deep JSCC显示出明显的优越性。 除了传输性能的提升,Deep JSCC还具有计算复杂度低的优势。传统方案需要大量的编解码操作,而Deep JSCC通过减少这些操作,可以更快地处理图像,并且降低了运算资源的需求。这在有限的信道带宽或低信噪比环境中尤为重要,因为它可以提高系统的实际应用效率。 在技术实现上,Deep JSCC采用了深度学习中的神经网络模型,这一模型需要大量的数据进行训练,以达到在各种信道条件下都能准确恢复图像的能力。数据的质量和多样性对于模型的泛化能力具有重要影响。而模型一旦训练完成,就可以在实际应用中快速地对图像进行编码和解码。 Deep JSCC图像传输技术的研究和应用,不仅在图像通信领域有着潜在的广泛应用前景,也为无线图像传输提供了一种新的思路。随着无线通信技术的快速发展,这样的技术能够极大地提高数据传输的效率和可靠性,为用户带来更好的体验。尤其在移动通信、远程医疗、卫星通信等领域,Deep JSCC技术的应用将具有重要意义。 展望未来,Deep JSCC技术的进一步研究和开发将集中于提高传输效率、降低计算复杂度、以及扩展到更广泛的信号类型上。通过优化神经网络结构和算法,可以进一步提升性能,使其适应更加复杂多变的通信环境。此外,随着相关硬件技术的发展,如专用的神经网络加速器,将有助于将Deep JSCC技术推向市场,使其在实际应用中得到广泛应用。

文件下载

资源详情

[{"title":"( 13 个子文件 234KB ) Deep JSCC图像传输[代码]","children":[{"title":"60yjyAqsUtrtnKWDV1nr-master-743bdb2c210b9644ce2dfccb878a582909fb4f4c","children":[{"title":"utils","children":[{"title":"channel.py <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 113B </span>","children":null,"spread":false},{"title":"TODO.md <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"models","children":[{"title":"decoder.py <span style='color:#111;'> 1.50KB </span>","children":null,"spread":false},{"title":"encoder.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":".inscode <span style='color:#111;'> 74B </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 6.87KB </span>","children":null,"spread":false},{"title":"demo.py <span style='color:#111;'> 6.29KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 6.19KB </span>","children":null,"spread":false},{"title":"deep_jscc_demo.png <span style='color:#111;'> 351.31KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.90KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明