CPG:Steven CY Hung、Cheng-Hao Tu、Cheng-En Wu、Chien-Hung Chen、Yi-Ming Chan 和 Chu-Song Chen,“Compacting, Picking and Growing for Unforgetting Continuous Learning”,第三十三届神经信息处理会议系统,NeurIPS 2019

上传者: 42100188 | 上传时间: 2025-11-11 16:45:53 | 文件大小: 10.03MB | 文件类型: ZIP
压实、采摘和种植 (CPG) 这是 CPG 的官方 Pytorch 实现——一种用于对象分类的终身学习算法。 有关CPG的详细信息,请参阅论文《 ( , ) 该代码仅供学术研究使用。 如需商业用途,请联系教授( )。 基准测试 施引论文 如果这些代码有助于您的研究,请引用以下论文: @inproceedings{hung2019compacting, title={Compacting, Picking and Growing for Unforgetting Continual Learning}, author={Hung, Ching-Yi and Tu, Cheng-Hao and Wu, Cheng-En and Chen, Chien-Hung and Chan, Yi-Ming and Chen, Chu-Song}, booktitle={Advance

文件下载

资源详情

[{"title":"( 57 个子文件 10.03MB ) CPG:Steven CY Hung、Cheng-Hao Tu、Cheng-En Wu、Chien-Hung Chen、Yi-Ming Chan 和 Chu-Song Chen,“Compacting, Picking and Growing for Unforgetting Continuous Learning”,第三十三届神经信息处理会议系统,NeurIPS 2019","children":[{"title":"CPG-cpg_face","children":[{"title":".gitignore <span style='color:#111;'> 6B </span>","children":null,"spread":false},{"title":"experiment1","children":[{"title":"PackNet_cifar100.sh <span style='color:#111;'> 2.31KB </span>","children":null,"spread":false},{"title":"CPG_cifar100_scratch_mul_1.5.sh <span style='color:#111;'> 9.07KB </span>","children":null,"spread":false},{"title":"inference_CPG_cifar100.sh <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"baseline_cifar100.sh <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false},{"title":"PAE_cifar100_scratch_mul_1.5.sh <span style='color:#111;'> 7.89KB </span>","children":null,"spread":false},{"title":"finetune_cifar100.sh <span style='color:#111;'> 2.56KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":".gitignore <span style='color:#111;'> 14B </span>","children":null,"spread":false}],"spread":true},{"title":"experiment3","children":[{"title":"baseline_face.sh <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"inference_checkpoints_FvGeEmAg.sh <span style='color:#111;'> 379B </span>","children":null,"spread":false},{"title":"FvGeEm_CPG_face.sh <span style='color:#111;'> 6.15KB </span>","children":null,"spread":false},{"title":"FvGeEmAg0_CPG_face.sh <span style='color:#111;'> 6.17KB </span>","children":null,"spread":false},{"title":"FvGeEmAg3_CPG_face.sh <span style='color:#111;'> 6.17KB </span>","children":null,"spread":false},{"title":"FvGeEmAg4_CPG_face.sh <span style='color:#111;'> 6.16KB </span>","children":null,"spread":false},{"title":"inference_FvGeEmAg.sh <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false},{"title":"FvGeEmAg1_CPG_face.sh <span style='color:#111;'> 6.16KB </span>","children":null,"spread":false},{"title":"FvGeEmAg2_CPG_face.sh <span style='color:#111;'> 6.17KB </span>","children":null,"spread":false}],"spread":true},{"title":"CPG_cifar100_main_normal.py <span style='color:#111;'> 22.76KB </span>","children":null,"spread":false},{"title":"models","children":[{"title":"vgg.py <span style='color:#111;'> 11.02KB </span>","children":null,"spread":false},{"title":"spherenet.py <span style='color:#111;'> 10.73KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 66B </span>","children":null,"spread":false},{"title":"layers.py <span style='color:#111;'> 7.64KB </span>","children":null,"spread":false},{"title":"resnet.py <span style='color:#111;'> 10.66KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"tools","children":[{"title":"choose_appropriate_pruning_ratio_for_next_task.py <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false},{"title":"choose_retrain_or_not.py <span style='color:#111;'> 789B </span>","children":null,"spread":false},{"title":"random_generate_task_id.py <span style='color:#111;'> 253B </span>","children":null,"spread":false}],"spread":true},{"title":"utils","children":[{"title":"__init__.py <span style='color:#111;'> 2.00KB </span>","children":null,"spread":false},{"title":"LFWDataset.py <span style='color:#111;'> 2.64KB </span>","children":null,"spread":false},{"title":"cifar100_dataset.py <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"packnet_manager.py <span style='color:#111;'> 11.31KB </span>","children":null,"spread":false},{"title":"fine_grained_dataset.py <span style='color:#111;'> 5.16KB </span>","children":null,"spread":false},{"title":"manager.py <span style='color:#111;'> 16.15KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 6.71KB </span>","children":null,"spread":false},{"title":"prune.py <span style='color:#111;'> 10.16KB </span>","children":null,"spread":false},{"title":"face_dataset.py <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"cifar100_config.py <span style='color:#111;'> 2.11KB </span>","children":null,"spread":false},{"title":"packnet_prune.py <span style='color:#111;'> 8.41KB </span>","children":null,"spread":false}],"spread":false},{"title":"packnet_imagenet_main.py <span style='color:#111;'> 14.89KB </span>","children":null,"spread":false},{"title":"checkpoints","children":[{"title":".gitignore <span style='color:#111;'> 14B </span>","children":null,"spread":false}],"spread":true},{"title":"packnet_models","children":[{"title":"vgg.py <span style='color:#111;'> 7.78KB </span>","children":null,"spread":false},{"title":"spherenet.py <span style='color:#111;'> 9.21KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 66B </span>","children":null,"spread":false},{"title":"resnet.py <span style='color:#111;'> 10.07KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 15.42KB </span>","children":null,"spread":false},{"title":"CPG_imagenet_main.py <span style='color:#111;'> 22.97KB </span>","children":null,"spread":false},{"title":"experiment2","children":[{"title":"baseline_imagenet.sh <span style='color:#111;'> 968B </span>","children":null,"spread":false},{"title":"CPG_imagenet.sh <span style='color:#111;'> 5.62KB </span>","children":null,"spread":false},{"title":"inference_CPG_imagenet.sh <span style='color:#111;'> 766B </span>","children":null,"spread":false}],"spread":false},{"title":"packnet_face_main.py <span style='color:#111;'> 14.74KB </span>","children":null,"spread":false},{"title":"docs","children":[{"title":"[Slides_PDF]19NeurIPS_unforgetting_continual_Learning.pdf <span style='color:#111;'> 1.73MB </span>","children":null,"spread":false},{"title":"[Slides_PPS]19NeurIPS_unforgetting_continual_Learning.ppsx <span style='color:#111;'> 2.34MB </span>","children":null,"spread":false},{"title":"19NeurIPS_unforgetting_continual_learning_poster.pdf <span style='color:#111;'> 3.33MB </span>","children":null,"spread":false},{"title":"[Poster]19NeurIPS_unforgetting_continual_learning.pdf <span style='color:#111;'> 3.33MB </span>","children":null,"spread":false}],"spread":false},{"title":"packnet_cifar100_main_normal.py <span style='color:#111;'> 10.95KB </span>","children":null,"spread":false},{"title":"logs","children":[{"title":".gitignore <span style='color:#111;'> 14B </span>","children":null,"spread":false}],"spread":false},{"title":"CPG_face_main.py <span style='color:#111;'> 20.29KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明