基于LSTM和CNN的音乐流客户流失预测模型

上传者: 38666697 | 上传时间: 2021-12-03 14:46:35 | 文件大小: 674KB | 文件类型: -
对于公司来说,要想实现持续发展,准确预测客户流失至关重要。 先前的研究已经使用许多机器学习方法来预测客户流失。 通用模型无法充分利用时间序列功能。 为了克服这个缺点,我们提出了一个基于LSTM和CNN的模型,该模型在LSTM层和卷积层之间具有跨层连接。 该模型可以同时学习潜在的顺序信息,并从时间序列特征中捕获重要的局部特征。 此外,我们介绍了一种通过在现有特征上训练XGBoost模型来构造新特征的方法。 在真实数据集上的实验结果表明,我们提出的模型比其他比较模型具有更好的性能。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明