STM32 SPI(Serial Peripheral Interface)是一种常见的串行通信接口,广泛应用于嵌入式系统中,用于连接并控制各种外设,如传感器、LCD显示屏、闪存等。在这个例程中,我们将深入探讨STM32如何配置和使用SPI进行通信,并提供实际验证过的代码示例。 1. **SPI工作原理**: SPI接口采用主-从架构,由一个主机(Master)驱动一个或多个从机(Slave)。通信时,主机发出时钟信号,从机根据时钟信号发送和接收数据。SPI有四种工作模式(CPOL和CPHA的组合),主要区别在于数据是在时钟脉冲的上升沿还是下降沿被采样,以及在哪个时钟周期数据有效。 2. **STM32 SPI初始化**: 在STM32中,SPI的初始化涉及以下步骤: - 选择SPI时钟源:通常使用APB1或APB2时钟,根据具体需求调整预分频器。 - 配置GPIO:SPI引脚需设置为推挽输出或开漏输出,并启用上拉/下拉电阻,根据应用选择合适的速度。 - 选择SPI模式:设置CPOL和CPHA参数。 - 设置波特率:通过配置SPI的预分频器和分频因子。 - 使能SPI总线和中断,如果需要的话。 3. **SPI传输数据**: STM32提供了多种方式发送和接收SPI数据,如SPI_Transmit、SPI_Receive、SPI_SendReceive等函数。在传输过程中,主机可以同时读取从机返回的数据,实现全双工通信。 4. **SPI中断处理**: 为了提高实时性,可以使用中断处理SPI通信完成事件。当传输结束时,SPI状态寄存器中的相关标志位会被置位,通过检测这些标志可以触发中断服务程序。 5. **SPI实例代码**: 以下是一个简单的STM32 SPI主设备发送数据到从设备的示例: ```c void SPI_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; SPI_InitTypeDef SPI_InitStructure; // 配置GPIO RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOA, &GPIO_InitStructure); // 配置SPI RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE); SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; SPI_InitStructure.SPI_Mode = SPI_Mode_Master; SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b; SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low; SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge; SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4; SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; SPI_InitStructure.SPI_CRCPolynomial = 7; SPI_Init(SPI2, &SPI_InitStructure); SPI_Cmd(SPI2, ENABLE); } void SPI_Transmit(uint8_t data) { while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_TXE) == RESET); SPI_I2S_SendData(SPI2, data); while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_BSY) == SET); } ``` 这段代码首先初始化GPIO和SPI2,然后定义了一个SPI_Transmit函数用于发送单个字节数据。注意在发送数据前要确保TXE(传输空)标志为低,表示SPI传输缓冲区已准备好接收新数据;在发送完成后,等待BSY(忙)标志变为低,表示传输已完成。 6. **调试与测试**: 在实际应用中,可能需要使用示波器检查SPI时钟和数据线上的信号,或者连接一个兼容的SPI从设备进行通信测试。确保时序正确,数据无误。 7. **注意事项**: - SPI通信可能会与其他外设冲突,确保正确设置NSS(片选)信号,避免不必要的选通。 - 检查电源和地线布局,确保信号质量。 - 在多设备环境中,正确配置SPI设备的地址或选择线。 这个STM32 SPI例程经过了实际测试,证明其功能是可靠的。你可以将这段代码作为基础,根据自己的硬件配置和应用需求进行修改和扩展,以满足不同的项目需求。
2024-09-02 13:42:46 2KB stm32 spi
1
STM32CubeMX配置STM32F103C8tx进行SPI双机通信(DMA方式)+串口输出 一定要共地!!!
2024-08-02 15:00:21 13.65MB stm32 SPI
1
stmg0_spi_receive.rar在微控制器的世界中,串行外设接口(SPI)是一种广泛使用的接口,它允许设备之间进行快速通信。在这篇文章中,我将介绍如何使用STM32的硬件抽象层(HAL)库来编程一个SPI从机。我们将通过一个实验来理解SPI在实际应用中的运作方式,并且深入了解STM32的编程方法。这是一个hal库的从机接收代码示例。
2024-07-10 08:47:42 9.21MB stm32 spi
1
ICM-20948 STM32I单片机驱动源码,SPI通信,DMP驱动,三轴加速度、加速度、磁场、欧拉角输出,主要初始化SPI和外部中断,移植inv_mems_drv_hook.c即可。 main(void) { NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); delay_init(); uart_init(921600); SPI2_Init(); GPIO_Config(); while(ICM_20948_Init()); while(1) { if (hal.new_gyro == 1) { hal.new_gyro = 0; //fifo_handler();//处理函数可放于中断 ICM20948_Get_Data(&icm20948_data); printf("Accel Data\t %8.5f, %8.5f, %8.5f\r\n", icm20948_data
2024-07-03 11:14:55 512KB stm32 SPI接口
亚德诺(ADI)半导体AD7685芯片在STM32平台的一个应用例子
2023-07-20 17:22:02 4.96MB STM32F103 stm32ad7685 ad7685 popular5ya
1
STM32 spi 包括uart spi 模块化
2023-04-05 20:14:14 493KB STM32 spi
1
STM32的SPI+DMA方式驱动SD卡底层程序,使用HAL库。可通过宏定义使能DMA或不使能DMA。DMA方式相较非DMA方式,速度优势明显。
2023-03-16 21:22:46 7KB stm32 SPI+DMA SD卡
1
STM32 H743与F429 SPI DMA通讯 (主从通讯)
2023-03-09 16:08:39 17.15MB stm32 SPI
1
stm32f103 硬件spi,spi1,可以正常输出4路电流
2023-02-20 17:57:20 6.05MB stm32 spi usart AD5686
1
只需将主程序中的when Rx和when Tx下的#if 0分别先后注释掉,下载到接收端和发送端即可,发送部分是每隔10s发送一次,接收部分是收到以后进入中断,led等亮灭变化
2022-12-23 13:08:19 2.91MB CC2500 STM32 SPI
1