内容概要:本文档是关于使用ResNet-50网络实现图像情感分类的深度学习实验报告。首先介绍了ResNet网络的特点及其优越性,特别是在图像识别领域的优势,主要包括解决梯度消失和梯度爆炸问题、信息传输完整性、特征学习能力等方面。文档详细描述了实验的设计过程,从理论基础到程序实现再到模型训练、优化、评估和最终的数据可视化等多个环节。重点展示了使用ResNet-50网络在处理图像情感分类问题上的优越性,并进行了详细的性能评估和技术细节探讨。 实验采用了SGD优化器,在ResNet的基础上做了超参数调节、预训练模型微调等工作,通过大量的迭代使最终的平均正确率达到45.2%, 最高达到52.1%。同时也指出了当前实验中存在的局限性及未来可能的方向,包括但不限于数据增强、细化调参以及探索更深的网络模型。 适合人群:具有一定的深度学习基础知识,尤其熟悉卷积神经网络(CNN)的从业者和研究者,或者想要深入了解图像分类特别是情感分类领域的研究人员。 使用场景及目标:本文适合于那些希望采用类似技术栈进行图像识别项目的团队和个人开发者;对于希望提高现有图像识别系统的准确性和效率的研究人员同样有价值。具体来说,该资源可用于理解和实践如何使用ResNet等先进CNN模型解决实际中的图像情感分类任务,通过学习代码实现和实验配置,帮助使用者建立自己的高质量分类模型。 阅读建议:读者应在了解基础的深度学习概念基础上阅读此文,重点理解ResNet的基本架构及其实现方式,以及各部分(比如Bottleneck block、残差连接)的具体作用机制。实验部分的内容可以帮助读者掌握数据准备、模型选择与调整的方法,同时也可以从中学习到有效的超参数调节技巧和其他优化策略。
2025-04-29 22:36:16 2.9MB 深度学习 ResNet 图像分类 PyTorch
1
从huggingface上下载的ResNet50预训练模型,十分泛用,解压后文件名为“resnet50-0676ba61.pth”
2025-02-24 17:45:18 90.77MB 机器视觉
1
MindSpore 框架下基于ResNet50迁移学习的方法实现花卉数据集图像分类(5类)
2024-07-28 17:00:53 613.56MB 迁移学习 数据集 python
1
基于ResNet50改进模型的图像分类研究
2024-07-26 14:36:39 1.57MB
1
# Resnet50卷积神经网络训练MNIST手写数字图像分类 Pytorch训练代码 1. 使用Pytorch定义ReNet50网络模型; 2. 使用Pytorch加载MNIST数据集,首次运行自动下载; 3. 实现训练MNIST手写数字图像分类,训练过程显示loss数值; 4. 训练完成后保存pth模型权重文件; 5. 在测试集上测试训练后模型的准确率。
2024-07-02 13:31:41 83.7MB resnet pytorch mnist 卷积神经网络
FGSM:resnet50上的快速梯度符号方法实现
2024-04-12 18:58:12 130KB JupyterNotebook
1
图像相似度 使用Resnet50+KNN在数据集中查找相似图像以获取新图像。 为了解决curse of dimensionality使用PCA来降低特征的维数。 Resnet50(在imageNet上训练) 在没有toplayer的情况下从keras创建Resnet50,以获取卷积特征(2048维)作为输出,而不是图像分类概率。 为数据集的每个图像提取卷积特征(Feature_size:[number_images,2048])。 KNN(不是分类问题) 将最近邻算法拟合到从数据集中提取的特征 提取测试图像(新)的卷积特征,并计算测试图像与数据集的每个图像之间的距离(image_Similarity)。 PCA 将PCA应用于提取的特征并减小尺寸。 使最近邻算法适合新功能
2023-08-30 14:42:39 11.3MB knn resnet-50 imagesimilarity JupyterNotebook
1
Official source code of "Batch DropBlock Network for Person Re-identification and Beyond" (ICCV 2019) 重识别问题的难点主要在于姿态的多变,随机遮挡等会降低模型的精度,抽取局部关注点信息,随机的去除batch中输入feature map的相同区域。然后将两个分支的输出concat,这种方式不但能够应用到重学习中也能够应用到其他场景。
2023-04-15 10:53:30 21KB resnet50
1
基于Pytorch+resnet50的农作物病虫害识别分类项目源码+病害数据集+项目说明文档.zip 【数据增强】 data_aug.py 用于线下数据增强,支持的增强方式: 高斯噪声 亮度变化 左右翻转 上下翻转 色彩抖动 对比度变化 锐度变化 【使用方法】 第一步:将测试集图片复制到 data/test/ 下 第二步:将训练集合验证集中的图片都复制到 data/temp/images/ 下,将两个 json 文件放到 data/temp/labels/ 下 执行 move.py 文件 执行 main.py 进行训练
深度学习作业_基于resnet50和vgg16网络pytorch框架实现猫狗分类完整源码+代码注释+实验报告.zip 猫狗分类,使用Kaggle猫狗分类的原始数据集,实现模型最终的准确率达到75%及以上。本实验的目的: 为了进一步掌握使用深度学习框架进行图像分类任务的具体流程如:读取数据、构造网络、训练和测试模型 掌握经典卷积神经网络VGG16、ResNet50的基本结构
2022-12-16 15:26:22 6.26MB VGG16 resnet50 猫狗分类源码 pytorch框架