[{"title":"( 28 个子文件 83.58MB ) ResNet50 图像分类训练全流程代码(Notebook + 完整注释)-基于 PyTorch 的工程化实战示例","children":[{"title":"predict.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"runs","children":[{"title":"resnet50_demo.pth <span style='color:#111;'> 90.00MB </span>","children":null,"spread":false}],"spread":true},{"title":"dataset.py <span style='color:#111;'> 837B </span>","children":null,"spread":false},{"title":"sample_data","children":[{"title":"class1","children":[{"title":"class1_1.jpg <span style='color:#111;'> 5.00KB </span>","children":null,"spread":false},{"title":"class1_2.jpg <span style='color:#111;'> 5.33KB </span>","children":null,"spread":false},{"title":"class1_7.jpg <span style='color:#111;'> 5.29KB </span>","children":null,"spread":false},{"title":"class1_4.jpg <span style='color:#111;'> 3.65KB </span>","children":null,"spread":false},{"title":"class1_5.jpg <span style='color:#111;'> 4.87KB </span>","children":null,"spread":false},{"title":"class1_3.jpg <span style='color:#111;'> 4.26KB </span>","children":null,"spread":false},{"title":"class1_6.jpg <span style='color:#111;'> 5.37KB </span>","children":null,"spread":false},{"title":"class1_8.jpg <span style='color:#111;'> 5.37KB </span>","children":null,"spread":false}],"spread":true},{"title":"class2","children":[{"title":"class2_7.jpg <span style='color:#111;'> 3.89KB </span>","children":null,"spread":false},{"title":"class2_8.jpg <span style='color:#111;'> 3.98KB </span>","children":null,"spread":false},{"title":"class2_1.jpg <span style='color:#111;'> 3.61KB </span>","children":null,"spread":false},{"title":"class2_3.jpg <span style='color:#111;'> 3.97KB </span>","children":null,"spread":false},{"title":"class2_6.jpg <span style='color:#111;'> 4.35KB </span>","children":null,"spread":false},{"title":"class2_2.jpg <span style='color:#111;'> 4.07KB </span>","children":null,"spread":false},{"title":"class2_4.jpg <span style='color:#111;'> 4.06KB </span>","children":null,"spread":false},{"title":"class2_5.jpg <span style='color:#111;'> 4.20KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"notebook","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 788B </span>","children":null,"spread":false},{"title":"resnet50_demo.ipynb <span style='color:#111;'> 39.07KB </span>","children":null,"spread":false},{"title":"transforms.py <span style='color:#111;'> 665B </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 74B </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 2.56KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"model.cpython-38.pyc <span style='color:#111;'> 800B </span>","children":null,"spread":false},{"title":"transforms.cpython-38.pyc <span style='color:#111;'> 631B </span>","children":null,"spread":false},{"title":"dataset.cpython-38.pyc <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false}],"spread":true}]