56206-Python数据预处理-教学PPT.zip
2022-08-06 10:00:46 11.51MB
1
在进行数据分析项目、比赛中,一手数据往往是脏数据。提高数据质量即数据预处理成为首要步骤,也会影响后期模型的表现。在此对利用Python进行预处理数据做一个总结归纳。 首先是缺失值处理。 #读取数据 import pandas as pd filepath= 'F:/...'#本地文件目录 df= pd.read_csv(train,sep=',')#df数据格式为DataFrame 查看缺失值 查看每一特征是否缺失及缺失值数量可能影响着处理缺失值的方法 df.isnull().sum() #查看每一列缺失值的数量 df.info() #查看每一列数据量和数据类型 删除缺失值 如果有些特征数
2022-06-17 09:04:21 57KB python 数据 数据预处理
1
本文实例为大家分享了Python数据预处理的具体代码,供大家参考,具体内容如下 1.导入标准库 import numpy as np import matplotlib.pyplot as plt import pandas as pd 2.导入数据集 dataset = pd.read_csv('data (1).csv') # read_csv:读取csv文件 #创建一个包含所有自变量的矩阵,及因变量的向量 #iloc表示选取数据集的某行某列;逗号之前的表示行,之后的表示列;冒号表示选取全部,没有冒号,则表示选取第几列;values表示选取数据集里的数据。 X = dataset.i
2022-03-18 10:47:51 51KB python python实例 test
1
数据为何要降维 数据降维可以降低模型的计算量并减少模型运行时间、降低噪音变量信息对于模型结果的影响、便于通过可视化方式展示归约后的维度信息并减少数据存储空间。因此,大多数情况下,当我们面临高维数据时,都需要对数据做降维处理。 数据降维有两种方式:特征选择,维度转换 特征选择 特征选择指根据一定的规则和经验,直接在原有的维度中挑选一部分参与到计算和建模过程,用选择的特征代替所有特征,不改变原有特征,也不产生新的特征值。 特征选择的降维方式好处是可以保留原有维度特征的基础上进行降维,既能满足后续数据处理和建模需求,又能保留维度原本的业务含义,以便于业务理解和应用。对于业务分析性的应用而言,模型的可
2021-12-23 10:58:28 75KB python 数据 数据降维
1
本项目包含作业要求和源代码,项目基于Python Scrapy爬虫实现对上市公司股民评论的爬取和公司年报的爬取;基于Python Tushare 爬取上市公司行情图,对爬取的内容进行预处理,包括分词、去停用词、转化词袋模型等。最后可视化结果,可视化清晰明了,可作为公司是否存在会计欺诈手段的检测
2021-11-19 12:03:26 34.88MB Scrapy Python预处理大作业 分词、可视化
今天小编就为大家分享一篇python数据预处理 :数据共线性处理详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2021-10-30 15:48:47 85KB python 数据 共线性
1
在进行数据分析项目、比赛中,一手数据往往是脏数据。提高数据质量即数据预处理成为首要步骤,也会影响后期模型的表现。在此对利用Python进行预处理数据做一个总结归纳。 首先是缺失值处理。 #读取数据 import pandas as pd filepath= 'F:/...'#本地文件目录 df= pd.read_csv(train,sep=',')#df数据格式为DataFrame 查看缺失值 查看每一特征是否缺失及缺失值数量可能影响着处理缺失值的方法 df.isnull().sum() #查看每一列缺失值的数量 df.info() #查看每一列数据量和数据类型 删除缺失值 如果有些特征数
2021-10-13 16:33:15 57KB python 数据 数据预处理
1
在进行python数据分析的时候,首先要进行数据预处理。 有时候不得不处理一些非数值类别的数据,嗯, 今天要说的就是面对这些数据该如何处理。 目前了解到的大概有三种方法: 1,通过LabelEncoder来进行快速的转换; 2,通过mapping方式,将类别映射为数值。不过这种方法适用范围有限; 3,通过get_dummies方法来转换。 import pandas as pd from io import StringIO csv_data = '''A,B,C,D 1,2,3,4 5,6,,8 0,11,12,''' df = pd.read_csv(StringIO(csv_data)
2021-10-09 22:13:53 41KB python 大数据 数据
1
今天小编就为大家分享一篇python数据预处理 :样本分布不均的解决(过采样和欠采样),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2021-08-27 09:34:41 68KB python 样本分布不均 过采样 欠采样
1
主要介绍了Python数据预处理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2021-07-05 17:47:43 51KB Python数据预处理 数据预处理
1