python数据预处理(1)———缺失值处理

上传者: 38576811 | 上传时间: 2022-06-17 09:04:21 | 文件大小: 57KB | 文件类型: PDF
在进行数据分析项目、比赛中,一手数据往往是脏数据。提高数据质量即数据预处理成为首要步骤,也会影响后期模型的表现。在此对利用Python进行预处理数据做一个总结归纳。 首先是缺失值处理。 #读取数据 import pandas as pd filepath= 'F:/...'#本地文件目录 df= pd.read_csv(train,sep=',')#df数据格式为DataFrame 查看缺失值 查看每一特征是否缺失及缺失值数量可能影响着处理缺失值的方法 df.isnull().sum() #查看每一列缺失值的数量 df.info() #查看每一列数据量和数据类型 删除缺失值 如果有些特征数

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明