内容概要:本文详细介绍了利用RRT(快速扩展随机树)算法为7自由度机械臂进行避障路径规划的方法。首先解释了为什么传统A*算法在这种高维空间中表现不佳,而RRT算法则更为高效。接着展示了RRT算法的具体实现,包括节点类的设计、碰撞检测、树的扩展以及路径优化等关键环节。文中提供了大量Python代码片段,帮助读者理解各个模块的工作原理。此外,还讨论了一些实用技巧,如引入偏向性采样以提高算法收敛速度,以及路径平滑处理以减少机械臂运动中的抖动。 适合人群:对机器人路径规划感兴趣的科研人员、工程师及有一定编程基础的学生。 使用场景及目标:适用于需要在复杂环境中进行精准操作的应用场合,如工业自动化生产线、医疗手术辅助设备等。目标是使机械臂能够在充满障碍物的空间中安全有效地完成指定任务。 其他说明:文章不仅涵盖了理论知识,还包括了许多实践经验和技术细节,有助于读者深入理解和掌握RRT算法及其在7自由度机械臂路径规划中的应用。
2025-05-05 01:06:37 1.98MB
1
内容概要:本文基于ROS(机器人操作系统)搭建了6自由度机械臂的运动轨迹规划仿真平台。首先利用SolidWorks建立机械臂模型,并通过SW2URDF插件生成URDF文件,完成机器人模型的描述。接着,利用Moveit!的设置助手完成运动规划相关文件的配置,在三维可视化平台Rviz中实现了笛卡尔空间的直线与圆弧插补。路径规划方面,采用RRT(快速扩展随机树)和RRTConnect算法,完成了高维空间和复杂约束下的无碰撞路径规划。仿真结果显示,RRTConnect算法收
1
自动驾驶技术:动态避障与路径规划控制系列视频教程——MATLAB Simulink仿真实验及代码实现,自动驾驶路径规划 采用动态规划实现动态避障功能 MATLAB SIMULINK仿真实验视频效果 代码,相应软件安装好即可直接运行 从汽车运动学到动力学模型搭建,设计控制算法,到决策规划算法,一整套自动驾驶规划控制系列目前已在Matlab2018b、carsim2019.1 和prescan8.5.0联合软件上跑通 提供代码 ,核心关键词:自动驾驶; 路径规划; 动态规划; 避障功能; MATLAB SIMULINK仿真实验; 运动学模型; 动力学模型; 控制算法; 决策规划算法; Matlab2018b; carsim2019.1; prescan8.5.0。,"基于动态规划的自动驾驶路径规划与避障系统设计与仿真"
2025-05-04 17:33:30 126KB 柔性数组
1
内容概要:本文详细介绍了如何利用动态规划(Dynamic Programming, DP)在MATLAB/SIMULINK环境中实现自动驾驶车辆的动态避障功能。首先,文章解释了动态规划的核心思想及其在路径规划中的应用,特别是通过状态转移方程来解决避障问题。接着,讨论了运动学模型(如自行车模型)的建立方法,以及如何通过PID和MPC控制算法进行路径跟踪和避障。此外,文章还探讨了联合仿真平台(MATLAB + Carsim + Prescan)的搭建和配置,展示了如何将理论转化为实际的仿真效果。最后,提供了完整的代码实现和调试技巧,帮助读者快速上手并优化性能。 适合人群:对自动驾驶技术和路径规划感兴趣的科研人员、工程师和技术爱好者。 使用场景及目标:适用于研究和开发自动驾驶系统,特别是在复杂环境下实现高效的动态避障功能。目标是提高车辆的安全性和智能化水平,减少人为干预。 其他说明:文中提供的代码已在GitHub上开源,读者可以直接下载并运行。需要注意的是,某些高级功能(如深度强化学习)将在后续版本中继续探索。
2025-05-04 07:13:33 315KB
1
在现代农业中,植保作业是保证农作物健康生长的重要环节,传统的人工作业方式劳动强度大、效率低,已不能满足现代农业的需求。随着无人机技术的快速发展,无人机植保作业以其高效、精准、低能耗等优点逐渐成为现代农业植保的重要方式。在无人机植保作业中,路径规划是关键问题之一,它直接关系到植保作业的效率和效果。人工势场算法作为一种有效的路径规划方法,为解决无人机协同作业中的路径规划问题提供了新的思路。 人工势场法(Artificial Potential Field Method, APF)是由Khatib于1986年提出的,它模拟了物理学中的势场概念,将环境障碍物转化为斥力场,目标点转化为引力场,无人机在这样的力场中运动,最终能够寻找到一条避开障碍物并趋向目标点的最优路径。具体来说,人工势场算法将无人机和目标位置之间的空间划分为吸引力势场和排斥力势场两部分,其中吸引力与距离目标位置的距离成反比,而排斥力则与无人机距离障碍物的距离成正比。无人机在吸引力和排斥力的共同作用下,动态地调整飞行路径。 在无人机协同植保作业中,作业区域往往较为复杂,包括田地的边界、树木、电线杆等障碍物,以及需要精确覆盖的植保区域。传统的单机路径规划方法难以适应这种复杂的环境和多无人机协同作业的需求。人工势场算法通过模拟势场,能够很好地解决这些问题。它可以动态地调整各无人机之间的势场,以避免无人机之间的碰撞和重叠,同时保证植保作业的全面覆盖。 无人机协同植保作业路径规划的关键是实现多无人机的自主协同,这包括任务分配、路径规划、避碰和通信等。其中路径规划是最为核心的部分。在应用人工势场算法进行路径规划时,需要考虑以下几个方面: 1. 势场模型的设计:构建适合无人机飞行特性和植保作业特点的势场模型,模型设计的好坏直接影响到路径规划的效率和准确性。 2. 动态环境适应性:环境是变化的,无人机在作业过程中可能会遇到突发状况,如障碍物移动或天气变化,势场算法需要能够实时调整,以适应环境变化。 3. 多无人机协同策略:在多无人机协同作业中,需要考虑无人机间的相互作用力,包括引力和斥力,以及如何在保证植保效果的同时,提高作业效率和减少资源浪费。 4. 优化算法:为了获得更优的路径规划结果,需要引入相应的优化算法,如遗传算法、粒子群优化等,以提升路径的全局最优性。 5. 安全性考虑:确保无人机作业路径规划的安全性,避免对人员、其他设备和环境造成潜在威胁。 基于人工势场算法的无人机协同植保作业路径规划,可以有效提高作业效率和植保质量,降低作业成本,对推进农业现代化进程具有重要意义。随着技术的不断进步,未来可以期待人工势场算法在无人机协同作业中的更广泛应用和进一步优化。
2025-05-03 21:32:03 215KB 人工势场法
1
内容概要:本文详细介绍了如何利用MATLAB进行机械臂的空间直线和圆弧轨迹规划。首先讨论了直线轨迹规划的方法,包括使用ctraj函数生成笛卡尔空间插值路径以及自定义插值方法确保关节角度变化的连续性。接着探讨了圆弧轨迹规划,提出了通过三点确定圆弧路径并使用三次样条插值提高路径平滑度的方法。文中还强调了逆运动学的应用及其重要性,特别是在处理关节角度变化不连续的问题时。此外,文章提到了一些实用技巧,如时间戳对齐、路径点加密、避免奇异点等,并提供了具体的MATLAB代码示例。 适合人群:从事机器人研究或开发的技术人员,尤其是那些希望深入了解机械臂轨迹规划原理和实现细节的人群。 使用场景及目标:适用于需要精确控制机械臂运动的研究和工程项目,旨在帮助开发者掌握如何使用MATLAB高效地完成机械臂的轨迹规划任务,从而实现更加流畅和平稳的动作执行。 其他说明:文中不仅提供了理论解释和技术指导,还包括了许多实践经验分享,有助于读者更好地理解和应对实际操作中可能遇到的各种挑战。
2025-05-03 13:53:38 134KB MATLAB Robotics Toolbox
1
内容概要:本文探讨了利用遗传算法解决带有充电桩的电动汽车路径规划问题(VRPTW)。首先介绍了VRPTW的基本概念及其在引入电动汽车和充电桩后的复杂性。接着详细解释了遗传算法的工作原理,包括选择、交叉和变异等操作。随后展示了具体的Matlab代码实现,涵盖参数初始化、初始种群生成、适应度函数、选择操作、交叉操作、变异操作以及主循环等步骤。最后讨论了结果分析方法,并提供了多个实用建议和技术细节,如充电站位置的选择、时间窗惩罚系数的设定等。 适合人群:从事物流与交通领域的研究人员、工程师以及对遗传算法感兴趣的开发者。 使用场景及目标:适用于需要优化电动汽车配送路线的企业和个人,旨在降低运输成本、提高配送效率,同时满足时间窗和服务质量的要求。 其他说明:文中提供的Matlab代码可以帮助读者快速理解和应用遗传算法解决实际问题。此外,还提到了一些常见的陷阱和注意事项,有助于避免常见错误并获得更好的优化效果。
2025-05-02 21:40:24 458KB
1
六自由度机械臂RRT路径规划算法的梯形速度规划与避障实现:路径、关节角度变化曲线、关节速度曲线及避障动图解析.pdf
2025-04-30 17:26:12 52KB
1
六自由度机械臂RRT路径规划与梯形速度规划的避障实现:附详细注释与改进动图曲线分析,六自由度机械臂RRT路径规划与梯形速度规划实现避障的算法研究及曲线绘制分析,六自由度机械臂RRT路径规划算法梯形速度规划规划,实现机械臂避障。 并绘制相关曲线: 1.经过rrt算法规划得到的路径; 2.关节角度变化曲线、关节速度曲线; 3.机械臂避障动图。 代码有详细注释,自己学习后进行了标注和改进。 ,RRT路径规划算法; 机械臂避障; 梯形速度规划; 关节角度变化曲线; 关节速度曲线; 路径规划结果; 改进后的代码注释。,基于RRT算法的六自由度机械臂避障路径规划与速度规划
2025-04-30 17:21:50 452KB kind
1
应用场景:在教育领域,每个学生的学习能力、兴趣和知识水平都不同,传统的统一教学模式难以满足学生的个性化需求。利用 DeepSeek 可以根据学生的学习历史数据、测评成绩、兴趣爱好等信息,为学生规划个性化的学习路径,并提供针对性的辅导建议。 实例说明:假设一个学生在数学学科的学习情况已知,包括各知识点的掌握程度、考试成绩和学习兴趣。程序将为该学生规划接下来的数学学习路径,并给出相应的辅导建议。
2025-04-30 10:47:42 2KB Python 源码
1