关于FCOS的一些改进(FCOS:完全卷积One-Stage对象检测)
2022-11-27 19:35:50 6.65MB Python开发-机器学习
1
与 (CVPRW'19)高效骨干网 这个软件库包含 (ICCV'19)与 (CVPRW'19)高效的骨干网络。 该代码基于FCOS的 强调 高效记忆 更好的性能,特别是对于小物体 速度更快 与ResNet主干网比较 相同的超参数 相同的训练方案(最大纪元,学习率时间表等) 8个TITAN Xp GPU pytorch1.1 CUDA v9 cuDNN v7.2 骨干 多尺度培训 推断时间(毫秒) 箱式AP(AP / AP / APm / APl) 下载 R-50-FPN-1x 不 84 37.5 / 21.3 / 40.3 / 49.5 -- V-39 -FPN-1x 不 82 37.7 / 22.4 /41.8/48.4 R-101-FPN-2x 是的 104 41.3 / 25.0 / 45.5 / 53.0 -- V-57 -FPN-2x 是的
2022-10-27 20:43:34 4.32MB pytorch deeplearning object-detection fcos
1
基于megengine的FCOS的目标检测模型,主干网络ResNet101
2022-10-17 22:05:51 341MB megengine fcos 目标检测模型
1
基于megengine的FCOS的目标检测模型,主干网络ResNext101
2022-10-17 22:05:50 341MB megengine fcos 目标检测模型
1
基于megengine的FCOS的目标检测模型,主干网络ResNet18
2022-10-17 17:07:44 68.36MB megengine 目标检测模型 fcos
1
基于megengine的FCOS的目标检测模型,主干网络ResNet34
2022-10-17 17:07:43 104.24MB megengine 目标检测模型 fcos
1
基于megengine的FCOS的目标检测模型,主干网络ResNet34
2022-10-17 17:07:42 114.76MB megengine fcos 目标检测模型
1
FCOS: Fully Convolutional One-Stage Object Detection
2022-05-31 09:12:00 459KB 目标检测 人工智能 计算机视觉
1
FCOS检测算法在VOC数据集上的训练模型,直接下载可进行inference。配合代码https://github.com/leviome/fcos_pure 使用。具体教程看README.
2021-12-19 15:46:30 123.49MB detection computer vision FCOS
1
作者提出了一种全卷积,一阶段目标检测网络,通过对每一个像素预测一个目标来解决目标检测问题(没有anchor,特征图上一个位置预测一个目标。anchor的办法是一个位置预测k个目标)。比起RetinaNet, SSD, YOLOV3, Faster RCNN等网络,FCOS不需要anchor,自然也不需要候选框。 通过消除anchor,FCOS避免了和ahor相关的复杂计算,比如在训练过程中要计算anchor和GT的IOU值。更重要的是,毕淼了和anchor相关的超参数,比如anchor的数目,比例和尺寸。FCOS具有更简单的网络结构,实现更高的精度。在单尺度单模型下,COCO上得到44.7%的AP。
2021-11-06 16:56:25 3.91MB FCOS 目标检测
1