目前的喷水灭火系统还有很多不足之处,因此我们设计了一个喷水灭火系统,它可以更智能地工作并节约用水! 硬件组件: 德州仪器LAUNCHXL-CC1310 SimpleLink CC1310低于1GHz的LaunchPad× 4 德州仪器LAUNCHXL-CC1310 SimpleLink CC1310低于1GHz的LaunchPad× 1 BeagleBoard.org BeagleBone Black× 1 SparkFun Snappable Protoboard× 1 犀牛PSA-CA004 2Amp 12V直流适配器× 1 LDO电压调节器× 4 Adafruit锂离子聚合物电池× 4 Adafruit USB / DC /太阳能锂离子/聚合物充电器 - v2× 4 DFRobot重力:模拟电容式土壤湿度传感器 - 耐腐蚀× 4 Adafruit中型6V 2W太阳能电池板 - 2.0瓦× 4 Adafruit Power Relay FeatherWing× 4 2N3904 NPN BJT× 4 软件应用程序和在线服务: 德州仪器Code Composer Studio Texas Instruments SimpleLink SDK Texas Instruments传感器控制器工作室 德州仪器SmartRF Studio Android Studio 亚马逊网络服务AWS EC2 Creo Debian Linux Python WordPress OpenWeatherMap API 手动工具和制造机器: 烙铁(通用) 3D打印机(通用) Digilent Mastech MS8217自动量程数字万用表 该项目的总体基础是整体改善普通家庭用户的洒水系统。我们观察到,与普通喷水定时器相比,还有很大的改进空间。我们的设计将是一个自动喷水灭火系统,能够监测室外条件并相应地调整喷水器设置。该系统将测量土壤湿度,天气数据和浇水时间表,以确定我们网络中的哪些洒水喷头应运行。使用本地网络连接,TI的CC1310 Launchpads,Beagle Bone Black和亚马逊网络服务,我们将传达湿度和天气数据,打开和关闭洒水喷头。该系统将在地下运行,并且能够在几乎没有物理维护的情况下保持运行。在外面运行的设备将采用太阳能供电,并开启以定期传输信息并最大限度地降低功耗。使用云托管的Web界面,用户将能够输入所需的浇水选项并查看其室外条件的实时数据。Web界面还允许用户安排浇水和覆盖计算机设置。还将提供当前系统状态。
2025-10-09 10:25:12 533KB 微控制器 电路方案
1
内容概要:本文详细介绍了双闭环PI控制在单相Boost PFC电路仿真中的应用。首先概述了Boost PFC电路的基本结构及其功率因数校正的目的,然后深入探讨了双闭环PI控制策略的设计,包括外环电压控制和内环电流控制的具体实现方法。文章提供了详细的MATLAB/Simulink代码片段,展示了如何配置PI控制器参数以及如何应对负载扰动。通过仿真结果,验证了系统的稳定性和鲁棒性,特别是在负载突变情况下的表现。此外,作者分享了一些调试经验和优化技巧,如避免高频振荡、设置合理的采样周期和负载扰动测试。 适合人群:从事电力电子、电源设计的研究人员和技术人员,尤其是对Boost PFC电路和双闭环PI控制感兴趣的工程师。 使用场景及目标:适用于希望深入了解Boost PFC电路工作原理和双闭环PI控制策略的技术人员。目标是掌握如何搭建和优化此类电路的仿真模型,确保系统在各种工况下都能保持良好的性能。 其他说明:文中提供的代码和参数设置仅供参考,实际应用时需根据具体情况进行调整。仿真环境推荐使用MATLAB/Simulink,以便更好地理解和实验相关概念。
2025-10-09 09:10:24 372KB 电力电子 Boost电路
1
恒流源电路是一种重要的电子电路,它能保持输出电流的恒定,不随负载或电源电压的变化而变化。这种特性在许多电子设备中都极为关键,例如在模拟电路设计、LED驱动器、电源管理以及传感器等领域都有广泛应用。下面将详细阐述恒流源的工作原理和几种常见的实现方式。 基本电流镜结构是恒流源的基础,它基于电流复制的原理。当两个工艺参数相同的MOSFET(金属-氧化物-半导体场效应晶体管)在饱和区工作时,如果它们的栅源电压相同,那么它们的漏极电流也会相等。然而,由于沟道调制效应,当漏源电压VDS不一致时,即使栅源电压相同,电流也会不同。为了克服这个问题,可以通过调整MOSFET的宽长比来设计出与参考电流成比例的输出电流,这就是比例电流镜的工作原理。但这种方法无法提供真正的恒流源,因为VDS2的变化会影响输出电流Io。 为了改善电流镜的恒流特性,通常有两种方法:一是尽量减少或消除M2的沟道调制效应,可以通过增加M2的沟道长度来提高输出阻抗;二是设置VDS2等于VDS1,使得Io只与M1和M2的宽长比有关,从而实现更好的恒流特性。在实际应用中,尤其是在小特征尺寸的CMOS工艺中,通常会采用第二种方法来设计恒流源电路。 威尔逊电流源是另一种改进的恒流源结构,它利用负反馈来提高输出阻抗,以增强恒流特性。在这个电路中,通过M3形成负反馈,使得VDS1>VGS1,保证M1始终工作在饱和区。由于VDS2和VDS1之间的关系,输出电流Io与参考电流IR不仅与M1、M2的尺寸有关,还取决于VGS2和VGS3的值。通过交流小信号等效电路分析,可以计算出电路的输出阻抗,进一步优化恒流特性。威尔逊电流源的优点是只需要三个MOS管,结构相对简洁,同时适用于亚阈值区。 然而,即使是威尔逊电流源,其M3和M2的漏源电压仍然不相等,因此有一种改进型的威尔逊电流源,引入了二极管连接的MOS管M4。通过设定VGS3=VGS4,可以使VDS1=VDS2,从而消除沟道调制效应,提高恒流精度。这种结构只需要四个MOS管,适合于对精度要求较高的应用。 共源共栅电流源是一种高输出阻抗的恒流源,其特点是使用共源共栅结构来确保VDS2=VDS1,从而改善恒流特性。通过适当选择M3和M4的尺寸,使得VGS3=VGS4,这样整个电路就能实现恒定的输出电流。这种结构在需要高精度和高输出阻抗的场合非常有用。 总结起来,恒流源电路的设计和优化是一个复杂的过程,涉及到MOSFET的沟道调制效应、负反馈机制以及电路的尺寸匹配。通过这些方法,我们可以设计出各种具有不同特性的恒流源,以满足不同应用场景的需求。
2025-10-08 17:07:27 503KB 恒流源电路
1
内容概要:本文详细介绍了如何利用PSpice进行SPWM(正弦脉宽调制)的仿真,特别是针对100kHz载波频率和1kHz正弦调制波的设计。文中首先解释了SPWM的基本原理,即通过比较三角波和正弦波生成PWM信号。然后逐步展示了如何在PSpice中构建各个模块,包括三角波发生器、正弦波调制源、比较器以及功率级电路。特别强调了三角波生成的关键参数设置,如上升时间和周期,以及正弦波的调制深度选择。此外,还讨论了死区时间的设定、MOSFET驱动电路的设计细节,并提供了具体的仿真设置和测量方法。最后,通过傅里叶分析验证了输出波形的质量,探讨了总谐波失真(THD)和效率等问题。 适合人群:从事电力电子、电机控制等领域,熟悉PSpice仿真软件的研发工程师和技术人员。 使用场景及目标:适用于需要深入理解和掌握SPWM调制原理及其仿真的技术人员。目标是帮助读者通过具体实例学会如何在PSpice中搭建完整的SPWM系统,优化电路性能,降低谐波失真,提高效率。 其他说明:文中不仅提供了详细的电路设计步骤,还包括了许多实践经验分享,如如何避免高频振荡、选择合适的调制深度等。同时,作者还提到了一些常见的陷阱和解决方案,有助于读者在实际项目中少走弯路。
2025-10-08 12:05:42 1.29MB
1
Boost电路解析
2025-10-07 22:40:10 470KB Boost
1
STM32F429I-DISCOVERY是ST公司推出的基于STM32F429ZIT6的探索套件。套件外设丰富,并且将所有引脚均引出,极方便用户的拓展和探索高性能的Cortex-M4内核! 本设计是基于STM32F429I-DISCOVERY制作的DDS函数发生器,可以通过触摸屏或PC软件来显示和控制。 触摸显示和控制: PC软件显示和控制: 主要功能如下: 波形输出:矩形波、锯齿波、正弦波、三角波 DAC分辨率:12位 频率范围:1Hz-50KHz 幅度:0-3.3V 在当今快速发展的电子行业,STM32F429I-DISCOVERY开发板因其高性能Cortex-M4内核以及丰富的外设成为工程师和爱好者的理想选择。基于这款开发板设计的DDS函数发生器,提供了灵活的波形输出能力,可以生成矩形波、锯齿波、正弦波和三角波等多种波形,对于电子测量、通信和控制系统等领域具有重要应用价值。 DDS函数发生器的核心是直接数字合成(Direct Digital Synthesis)技术,它允许用户通过数字方式精确控制输出波形的频率、幅度和形状。在本设计中,DDS函数发生器能够实现1Hz至50KHz的宽频率范围,以及0至3.3V的输出幅度,这为各种应用场景提供了足够的灵活性和扩展性。通过触摸屏或PC软件的交互界面,用户能够轻松地设置波形参数并实时观察波形的变化,极大地方便了用户在进行电子设计和测试时的波形调试工作。 设计中的DAC(数字模拟转换器)分辨率为12位,这意味着它可以提供4096个不同的输出电平,从而确保了波形的平滑度和精确度。高分辨率的DAC配合DDS技术,保证了输出波形的质量,使其能够满足对波形精度有较高要求的专业应用。 本设计还提供了完整的源代码和电路原理图,这些资料对于理解DDS函数发生器的工作原理和开发过程至关重要。通过原理图,硬件工程师可以清楚地了解各个组件之间的连接关系,以及如何将STM32F429I-DISCOVERY开发板连接到其他电路中去。而源代码则为软件开发者提供了基础,他们可以通过分析和修改这些代码来进一步开发或定制功能,以适应特定的应用场景。 文件名称列表中的stm32f429i-disco.zip和generator.zip文件可能包含了上述提及的源代码和软件程序,而stm32f429i-disco_sch.zip文件则应为电路原理图的压缩包。DDS_Generator_UB.zip文件可能包含了PC端的上位机程序,用于与DDS函数发生器的硬件进行通信和控制。 基于STM32F429I-DISCOVERY的DDS函数发生器不仅为用户提供了一个高效、可靠的波形生成解决方案,而且其开源的设计资料也为电子工程师和爱好者提供了一个学习和实践的平台,有助于推动电子技术的创新和应用。
2025-10-07 18:25:55 3.33MB stm32
1
### 两级直流耦合放大电路解析 #### 一、引言 在电子技术领域,放大电路作为信号处理的重要环节,其性能直接影响到整个系统的稳定性和可靠性。两级直流耦合放大电路是一种常见的放大电路结构,相较于单级放大电路,它能够提供更高的增益,并且在一定程度上改善了电路的稳定性。然而,正如描述中所提到的,简单的两级直流耦合放大电路在实际应用中会遇到一些问题。 #### 二、两级直流耦合放大电路概述 直流耦合放大电路是指信号通过直接连接的方式进行传递,而无需使用耦合电容。这种结构的优点是可以放大非常低频甚至直流信号,适用于需要放大直流成分或低频信号的应用场合。在两级直流耦合放大电路中,两个晶体管被串联起来,信号从第一个晶体管的基极输入,经过放大后,直接传输到第二个晶体管的基极继续放大,最后从第二个晶体管的集电极输出。 #### 三、两级直流耦合放大电路的组成与工作原理 - **第一级放大器**:通常采用NPN型或PNP型晶体管,信号从基极输入,经放大后从集电极输出。集电极电压(UCi)将直接影响到第二级放大器的工作状态。 - **第二级放大器**:同样采用NPN型或PNP型晶体管,其基极接收来自第一级放大器的输出信号,继续进行放大处理。 #### 四、两级直流耦合放大电路的问题分析 在描述中提到,简单地将两个基本共射极放大电路直流耦合时,存在以下问题: - **VT1集电极电压过低**:由于VT2的发射极压降Uaeoz(硅管约为0.7V,锗管约为0.3V),导致VT1的集电极电压UCi也很低,无法保证VT1正常工作。 - **VT2基极电流过大**:VT2的静态基极电流可能会过大,导致VT2无法正常进入放大区工作,从而影响整体电路的放大效果。 #### 五、解决方案探讨 为了解决上述问题,可以采取以下几种改进措施: 1. **引入负反馈**:通过适当引入负反馈,可以稳定集电极电压,确保晶体管工作在放大区。 2. **调整偏置电路**:通过改变电阻值或增加额外的偏置电路来调节VT1和VT2的工作点,使其处于合适的放大状态。 3. **使用有源负载**:用另一个晶体管或场效应管代替传统的电阻负载,可以提高放大倍数并改善电路的稳定性。 4. **引入缓冲级**:在两级之间加入一个缓冲级,例如共集电极放大器,可以有效隔离前后级之间的相互影响,改善电路的整体性能。 #### 六、设计注意事项 - **选择合适的晶体管类型**:根据具体应用需求选择合适的晶体管类型(如NPN或PNP),并考虑其特性参数。 - **合理设计偏置电路**:确保晶体管工作在最佳的放大区域,避免因偏置不当而导致的工作不稳定。 - **考虑温度稳定性**:在设计过程中应考虑温度对电路性能的影响,可以通过适当的设计降低温度变化带来的负面影响。 - **注意电源电压范围**:确保电路能够在预期的电源电压范围内稳定工作。 #### 七、结论 虽然两级直流耦合放大电路存在一定的局限性,但通过合理的电路设计和优化措施,仍然可以在许多应用场景中发挥重要作用。通过引入负反馈、调整偏置电路、使用有源负载等方法,可以显著改善电路的性能,使其成为一种实用的放大电路结构。 两级直流耦合放大电路虽然在理论上存在着一定的缺陷,但通过一系列的技术手段和设计技巧,完全可以在实际应用中实现高效稳定的放大功能。
1
三极管放大电路
2025-10-05 18:54:00 155KB Multisim14.0
1
西安电子科技大学作为中国电子信息领域的著名高校,其821电路信号系统课程不仅是电子与通信工程专业的核心课程之一,也是研究生入学考试的重要科目。这门课程主要涉及电路分析、信号与系统的基础知识,对考生的理论基础和分析能力有较高要求。通过对2004年至2024年这二十年间的考研真题进行研究,考生可以更好地把握考试的命题趋势和重点内容,对于备考西电研究生具有重要的参考价值。 从历年真题中可以发现,电路信号系统的考试题目往往围绕电路的基本定律、定理以及信号处理的基本方法展开。例如,考生需要熟练掌握基尔霍夫电流定律、电压定律,欧姆定律,以及叠加定理、戴维宁定理等分析复杂电路的基础工具。此外,对于二阶电路的瞬态分析、拉普拉斯变换及其在电路中的应用,也是高频考点。 在信号与系统方面,线性时不变系统(LTI)的时域和频域分析是核心内容。这意味着考生需要熟练掌握卷积运算、傅里叶级数、傅里叶变换、拉普拉斯变换及其在信号分析中的应用。拉普拉斯变换的理解和应用,特别是在求解线性时不变系统的零输入响应和零状态响应方面,是考察的热点。 真题解析部分对于理解考研试题的解答方法和思路至关重要。通过对真题的详细解析,考生可以学习如何准确把握题目要求,分析问题所在,选择合适的定理、公式和方法来求解。这些解析不仅提供了解题的答案,更重要的是提供了思考问题和解决问题的思路和方法,这对于提升考生的应试能力和实际问题解决能力都有很大帮助。 此外,对于不同年份的真题进行横向比较,可以发现试题难度、题型、考点的变化趋势。随着电子科技的快速发展,电路信号系统学科知识也在不断更新和扩充。因此,考研真题的分析不仅能够帮助考生复习掌握经典的基础知识,还能让考生对新知识点有所了解和准备。 对于西安电子科技大学的考生而言,对821电路信号系统的真题与解析进行深入研究,不仅可以帮助他们回顾和巩固专业知识,提高解题能力,更能帮助他们适应考试风格,提高答题效率和准确性。因此,这本真题集对于西电电路与信号系统的考研生来说是一本难得的复习资料。
2025-10-05 13:58:30 51.14MB
1
华南理工大学 射频电路与天线23_混频器20101207,非常好的资料。
2025-10-04 07:49:10 1.15MB
1