2层PCB 50.8 x 91.4毫米FR-4,1.6毫米,1,带铅的HASL,黑色阻焊剂,白色丝印。 MEGA 1284P是基于ATmega1284P的开源微控制器。它具有24个数字输入/输出引脚(其中6个可以是PWM输出),8个模拟输入引脚,一个16 MHz陶瓷谐振器,一个ICSP引脚接头,一个复位按钮,以及一个与LED相连的引脚13。微控制器,您可以使用5伏串行电压或从Vin引脚使用7伏至35伏电压(使用两种方法之一,不能同时使用)。 引脚排列: 如何使用它: 要对此微控制器进行编程,必须有一个USB适配器连接到TLL,Arduino IDE和IDE中安装的相应库。
2025-08-07 10:14:10 406KB 微控制器 atmega1284p 电路方案
1
内容概要:本文详细介绍了一种利用MATLAB和递推最小二乘法(RLS)对锂离子电池二阶RC等效电路模型进行参数辨识的方法。首先介绍了数据读取步骤,包括从NASA官方获取电池数据并进行预处理。接着阐述了RLS的基本原理和实现过程,展示了如何通过不断更新参数估计值使模型输出与实际测量值之间的误差最小化。最后,通过实验验证了该方法的有效性和准确性,误差控制在3%以内,能够很好地反映电池的实际特性。 适合人群:从事电池管理系统(BMS)开发的研究人员和技术人员,尤其是对锂离子电池建模感兴趣的工程师。 使用场景及目标:①用于电池性能评估和优化;②提高电池管理系统的精度和可靠性;③为后续电池老化研究提供基础。 其他说明:文中提供了详细的MATLAB代码示例和一些实用的经验技巧,帮助读者更好地理解和应用这一方法。此外,还提到了一些常见的注意事项和可能遇到的问题,如电流正负号定义、初始SOC校准等。
2025-08-05 22:59:36 610KB
1
在电子工程领域,DAB(Dual Active Bridge)即双活桥变换器是一种高效、灵活的电能转换装置,它能在多个电源与负载之间提供双向能量流动的控制。在给出的文件信息中,DAB仿真模型通过采用电压电流双闭环控制系统,以及单移相控制策略,实现对输入电压和输出电压的精确控制。 电压电流双闭环控制是一种先进的控制方式,它通过监控和调节电压以及电流两个参数,确保系统的稳定性和高效性。在DAB系统中,这种控制方法有助于平衡输入与输出端的能量,提高系统的响应速度和动态性能。单移相控制则是一种调节功率传输的方法,通过改变相位差来控制功率流动的方向和大小,实现对电能的精确控制。 根据文件描述,该DAB仿真模型的输入电压为700V,输出电压设定为350V,并且具有可调性。这意味着该系统可以通过调节内部参数来适应不同的工作环境和负载要求。输出电压的稳定性对于整个系统的性能至关重要,特别是在需要精密电压控制的应用场合。 主电路部分是DAB系统的核心,它负责实现电能的转换和传输。文件中提到的主电路及输出波形,可能指的是模拟或实际的电路设计及其在工作时产生的电压和电流波形图。电路设计的优劣直接关系到系统性能和效率,包括功率因数、转换效率、热损失等多个关键性能指标。 从文件名列表中,我们可以看到有多个文件涉及到了DAB仿真模型的各个方面。例如,“仿真模型技术分析随着科技的飞速发展电子.txt”和“仿真模型研究与应用一引言随着电力电子技术的不断.txt”可能是对DAB技术发展背景和应用前景的概述;“仿真模型电压电流双闭环控制的探索与实现在数字电路.txt”和“仿真模型解析技术深度剖析在当今数字化时代技术发.txt”可能涉及双闭环控制策略和数字技术在DAB中的应用;“在广播领域中仿真模型的建立是非.txt”可能探讨了DAB在广播通信领域的应用;而“仿真模型是一种基于电压电流双闭环单移相控制.doc”和“仿真模型研究与应用一引言随着电力电子技术的不断.txt”可能包含了对整个DAB系统及其控制方法的详细研究和分析。 DAB仿真模型在模拟和实际操作中都扮演着重要的角色,其高效的能量转换和精确的控制策略,使它成为电力电子技术领域中不可或缺的一环。通过对电压电流双闭环和单移相控制技术的研究和应用,DAB系统不仅提高了电子设备的性能,而且为各种电子和通信设备的优化和创新提供了新的可能。
2025-08-05 22:54:50 175KB
1
本图是根据实物剖析而来,电源经D2、R1为IC1提供+12V左右的电压,6脚输出脉冲经C4和变压器耦合后驱动Q1振荡,当Q1导通后输出电流通过L经C9滤波后向负载供电,当Q1截止时,变压器式电感B3磁能转变为电能,其极性左负右正,续流二极管D4导通,电流通过二极管继续向负载供电,使负载得到平滑的直流,当输出电压过低或过高时,从电阻R11、R10、R9组成的分压电路中得到取样电压送到IC1 2脚与内部2.5V基准电压比较后控制Q1导通脉宽,从而使输出电压得到稳定。当负载电流发生短路或超过8A时,IC1 3脚电压的上升会控制脉宽使Q1截止,以确保Q1的安全。
2025-08-05 17:24:49 237KB 开关|稳压
1
电动车电源转换器电路图是根据实物剖析而来,电源经D2、R1为IC1提供+12V左右的电压,6脚输出脉冲经C4和变压器耦合后驱动Q1振荡,当Q1导通后输出电流通过L经C9滤波后向负载供电,当Q1截止时,变压器式电感B3磁能转变为电能,其极性左负右正,续流二极管D4导通,电流通过二极管继续向负载供电,使负载得到平滑的直流,当输出电压过低或过高时,从电阻R11、R10、R9组成的分压电路中得到取样电压送到IC12脚与内部2.5V基准电压比较后控
2025-08-05 17:19:09 233KB 变频|逆变
1
"入门首选:8bit逐次逼近型SAR ADC电路设计成品,基于SMIC 0.18工艺,3.3V供电,采样率500k,含电路文件和详细设计文档",8bit逐次逼近型SAR ADC电路设计成品 入门时期的第三款sarADC,适合新手学习等。 包括电路文件和详细设计文档。 smic0.18工艺,单端结构,3.3V供电。 整体采样率500k,可实现基本的模数转,未做动态仿真,文档内还有各模块单独仿真结果。 ,关键词:8bit SAR ADC;电路设计成品;入门第三款;学习适用;电路文件;详细设计文档;smic0.18工艺;单端结构;3.3V供电;整体采样率500k;模数转换;未做动态仿真;仿真结果。,"初探者必学:8位SAR ADC电路设计成品,smic0.18工艺,单端结构3.3V供电"
2025-08-04 18:33:57 266KB kind
1
8bit逐次逼近型SAR ADC电路设计成品 入门时期的第三款sarADC,适合新手学习等。 包括电路文件和详细设计文档。 smic0.18工艺,单端结构,3.3V供电。 整体采样率500k,可实现基本的模数转换,未做动态仿真,文档内还有各模块单独仿真结果。 逐次逼近型SAR ADC(Successive Approximation Register Analog-to-Digital Converter)是一种模数转换器,它通过逐次逼近的方法将模拟信号转换为数字信号。本文所介绍的8位逐次逼近型SAR ADC电路设计成品,是针对入门阶段学习者的第三款设计,提供了电路文件和详细设计文档,非常适合初学者进行实践学习和研究。 该SAR ADC采用smic0.18微米工艺制造,具有单端结构,并且由3.3V供电。其整体采样率为500k,能够实现基本的模数转换功能。尽管在设计文档中提到未进行动态仿真,但包含了各个模块单独的仿真结果,这为学习者提供了一个详细的参考,帮助他们理解每个模块的作用和工作原理。 逐次逼近型SAR ADC的原理基于逐次逼近寄存器的位权试探,它从最高有效位开始,依次向最低有效位逼近,通过比较电路输出与输入模拟电压的差异,确定每一位的数字输出。这种转换方式相比其他类型如闪存(Flash)或积分(Integrating)ADC来说,在功耗和面积上有一定的优势,且在中等速度和中等精度的应用场合表现良好。 在设计文档中,学习者可以找到SAR ADC电路的各个模块的设计和分析,比如采样保持电路(Sample and Hold, S/H)、比较器(Comparator)、逐次逼近寄存器(SAR)以及数字控制逻辑等。采样保持电路负责在转换期间保持输入信号的稳定,比较器则用于判断输入信号和DAC(数字模拟转换器)输出信号的大小关系,逐次逼近寄存器根据比较结果确定数字输出,而数字控制逻辑则负责整个转换过程的时序控制。 由于SAR ADC的结构相对简单,它也较易于集成,适合在各种便携式和低功耗应用中使用,如传感器数据采集、仪器仪表等。在设计文档中,学习者可以通过仿真结果来观察各模块的功能表现,通过实际电路的搭建和测试来理解理论与实践之间的差异,进而掌握SAR ADC的设计流程。 此外,设计文档还应包括了关于smic0.18工艺的介绍,这对于理解电路性能参数和进行工艺优化是有益的。学习者可以通过对工艺参数的深入学习,了解工艺的选择如何影响电路的性能,例如速度、功耗、噪声等,并在后续的设计中加以应用。 对于初学者而言,掌握逐次逼近型SAR ADC的设计和仿真,不仅有助于理解模数转换器的工作原理,还能增强其对数字电路设计的综合能力。通过实际操作和文档的学习,可以为更复杂的系统设计打下坚实的基础。 8位逐次逼近型SAR ADC电路设计成品为新手提供了一个理想的学习平台,通过提供的电路文件和详细的设计文档,初学者可以全面地了解和掌握SAR ADC的设计过程和相关知识,为今后的专业发展奠定坚实的基础。
2025-08-04 18:32:45 255KB
1
USB_HUB 硬件电路引脚原理解析 本文档对 USB_HUB 硬件电路的引脚进行了详细的分析和解释。USB_HUB 电路是一种可以将一个 USB 接口扩展为多个(通常为 4 个),并可以使这些接口同时使用的电路。该电路采用 GL852GT 系列器件(USB 2.0 MTT Hub Controller),4 端口集线器解决方案,规范修订版为 2.0。 引脚概述: * RREF:模拟量,680Ω 电阻必须连接在 RREF 和模拟地(AGND)之间。 * DM0, DP0:双向,1 个上行端口信号,USB 信号必须在理,参考指南。 * DM1~DM4, DP1~DP4:双向,4 个下行端口信号。 * OVCUR1#~4:输入,4 个下行端口信号过电流指示,内部已上拉,低电平有效(2~4 一般悬空)。 * OVCUR1:模式,22PSELF 输入,0:GL852GT 总线供电,1:GL852GT 自供电。 * PGANG:双向,一般开启 GANG 模式,参考 10,11X1,X2。 * I/O:晶振/OSC 时钟输入输出,参考 17。 * RESET#:输入,复位信号,低电平有效,默认上拉电阻 10KΩ。 * TEST/SCL:双向,输入内部已上拉,不用悬空。 * SDA:双向,不用悬空。 * AVDD:电源,模拟电路 3.3V 电源输入,模拟电路对电源和接地噪声非常敏感。 * DVDD:电源,数字电路 3.3V 电源输入。 * V5:电源/输入,5V 电源输入。 * V33:电源/输出,5V 至 3.3V 稳压器输出或者 3.3V 输入。 总体电路设计: * RREF 电路设计:用于提供模拟电路的参考电压。 * PSELF 电路设计:用于选择 GL852GT 的供电模式。 * GANG 模式电路设计:用于选择 GANG 模式。 * 晶振电路设计:用于提供时钟信号。 * RESET 电路设计:用于提供复位信号。 * 上游及下游端口电路设计:用于实现 USB_HUB 的上游和下游端口的连接和通信。 两种典型应用电路: * 第一种:用于实现 USB_HUB 的基本功能,包括上游和下游端口的连接和通信。 * 第二种:用于实现 USB_HUB 的高级功能,包括 GANG 模式和自供电模式。 本文档对 USB_HUB 硬件电路的引脚进行了详细的分析和解释,为设计和开发 USB_HUB 电路提供了有价值的参考。
2025-08-04 17:25:28 1.24MB USB_HUB 引脚定义
1
LA4582C是音频信号放大电路,为36脚四列扁平贴片式塑封,在索尼WM-EX122型随身听上的正常工作电压典型检测数据如表所列,用MF14型三用表测得(DC挡)。  表 LA4582C在索尼WM-EX122型随身听上的检测数据   
1
ne555延时电路图(一) 用NE555开机延时输出高电平电路 开机延时输出高电平电路如上图所示。当开机接通电源后,由于电容C来不及充电,555时基电路的②、⑥脚处于高电平,③脚输出低电平。随着电容C充电,555时基电路的②、⑥脚电位下降。直到②脚电位低于1/3Vcc时,电路状态发生翻转,③脚由低电平变为高电平,并一直保持下去。开机延迟时间tw=1.1RC.电路中的二极管VD是为电源断电后电容C放电而设置的。这种电路一般用来控制高压电源的延迟接通或控制其他电源电路的延迟接通,故又把这种电路叫做开机高压延时电路。 ne555延时电路图(二) 电路工作原理 当按下按钮SB时,12V的电源通过电阻器Rt向电容器Ct充电,使得6脚的电位不断升高,当6脚的电位升到5脚的电位时,电路复位定时结束。由于在5脚串上了一个二极管 VD1使得5脚电位上升,因此比一般接法(悬空或通过小电容接地)具有了更长时间的定时。 元器件的选择 555电路选用NE555、μA555、SL555等时基集成电路;二极管VT1、VT2选用4148型硅开关二极管;电阻器R1、Rt选用RTX—1/4W型碳膜
2025-08-04 08:36:00 291KB NE555 延时电路 硬件设计
1