数据集-目标检测系列- 豹子 猎豹 检测数据集 leopard - DataBall 标注文件格式:xml 解析脚本地址:https://gitcode.com/DataBall/DataBall-detections-100s/overview 脚本运行方式: * 设置脚本数据路径 path_data * 运行脚本:python demo.py 样本量: 150 目前数据集暂时在该网址进行更新: https://blog.csdn.net/weixin_42140236/article/details/142447120?spm=1001.2014.3001.5501
2024-11-01 19:04:55 8.87MB 数据集 目标检测
1
内容概要:本文介绍了基于YOLOv11的人员溺水检测告警监控系统,详细描述了项目的实施背景、特点及相关参考资料等内容。具体实现上,通过使用YOLOv11模型对从摄像头获得的视频流实现实时的人类溺水监测,同时提供有友好的GUI用于交互操作,在出现异常情况后能够及时做出反应并通过音频或短信的方式发出警告提示。 适合人群:专注于水域安全的专业人员和技术开发者。 使用场景及目标:适用于需要实时监视溺水事故的各种场景,包括游泳池、湖滨及海岸线等等。 阅读建议:为了更好地掌握该技术的设计思路及其应用场景的具体细节,鼓励深入探讨与实践相关内容。
2024-10-31 00:55:35 48KB 深度学习 目标检测
1
ultralytics yolo 训练及推理自定义人脸关键点数据 - python 实现 ultralytics yolo 训练自定义人脸关键点训练和验证数据集 数据集格式:yolo 训练集数量:3295 验证集数量:120 类别:人脸,1类 类别号:0 关键点:5个,包括左眼,右眼,鼻尖,左嘴唇边界点,右嘴唇边界点。
2024-10-22 15:12:20 327.2MB 数据集 yolo 人脸关键点检测 目标检测
1
在计算机视觉领域,基于图像的目标检测与追踪是两个核心任务,它们在许多应用中发挥着重要作用,如自动驾驶、无人机导航、视频监控、人机交互等。在这个“基于图像的目标检测与追踪”压缩包中,我们可以预想包含了一系列相关资源,如论文、代码实现、教程文档等,帮助学习者深入理解这两个概念。 目标检测是计算机视觉中的关键环节,其目的是在图像中识别并定位出特定的对象。常用的方法有传统的基于特征匹配的算法,如Haar级联分类器和HOG(Histogram of Oriented Gradients)特征,以及深度学习模型,如YOLO(You Only Look Once)、SSD(Single Shot MultiBox Detector)和Faster R-CNN(Region-based Convolutional Neural Networks)。这些模型通过训练大量标注数据,学会了识别和定位不同类别的目标。例如,YOLO以其快速和准确而闻名,而Faster R-CNN则通过区域提议网络提高了检测精度。 目标追踪则是在目标检测的基础上,追踪一个或多个特定对象在连续帧之间的运动轨迹。经典的追踪算法有KCF(Kernelized Correlation Filter)和MIL(Multiple Instance Learning),而现代方法如DeepSORT和FairMOT则结合了深度学习技术,实现了对复杂场景中多目标的精确追踪。这些方法通常需要考虑光照变化、遮挡、目标尺度变化等因素,以保持追踪的稳定性。 在数字图像处理实习中,学生可能需要掌握基本的图像处理技术,如图像预处理(灰度化、直方图均衡化、滤波等)、特征提取以及目标表示。这些基础知识对于理解和实现目标检测与追踪算法至关重要。 基于STM32平台的学习,意味着这个项目可能涉及到硬件集成。STM32是一种常见的微控制器,常用于嵌入式系统,包括图像处理和计算机视觉应用。使用STM32进行目标检测与追踪,需要熟悉其GPIO、SPI、I2C等接口,以及如何将计算密集型算法优化到嵌入式平台上运行,可能需要涉及OpenCV库的移植和硬件加速技术。 压缩包中可能包含的文件可能有: 1. 论文:介绍最新的目标检测和追踪算法及其应用。 2. 实验代码:用Python或C++实现的各种检测和追踪算法,可能包括OpenCV库的调用。 3. 数据集:用于训练和测试模型的图像或视频数据,每个目标都有精确的边界框标注。 4. 教程文档:详细介绍如何理解和实施相关算法,以及在STM32平台上部署的步骤。 5. 示例程序:演示如何在STM32上运行目标检测和追踪算法的工程文件。 通过学习和实践这些内容,不仅可以掌握理论知识,还能提升实际操作能力,为未来在计算机视觉领域的工作打下坚实基础。
1
YOLOv5是一种高效的目标检测模型,源自亚利桑那州立大学的 Ultralytics 团队。这个模型在计算机视觉领域被广泛使用,因为它能够快速地在图像中检测出多种对象,同时保持相当高的精度。YOLO(You Only Look Once)系列自2016年首次提出以来,经历了多次迭代,而YOLOv5是该系列的最新版本。 标题"yolov5源码+yolov5n.pt、yolov5s.pt文件整合"表明这是一个包含YOLOv5模型源代码和预训练权重的资源包。`yolov5n.pt`和`yolov5s.pt`是两种不同配置的YOLOv5模型的预训练权重文件。`yolov5n`通常代表轻量级网络,适用于计算资源有限的环境,而`yolov5s`则是一个稍大一些的模型,通常提供更好的性能但需要更多的计算资源。 描述中的"适合外网访问不了的使用"意味着这个资源包对于那些无法直接从Ultralytics的GitHub仓库下载或者由于网络限制的人特别有用。用户可以离线获取完整的YOLOv5实现,包括源代码和预训练模型,从而进行目标检测任务。 标签"软件/插件 yolov5 目标检测"揭示了这个资源的主要应用领域。YOLOv5可以被视为一个软件工具,它通过加载`pt`权重文件,配合源代码,能够在不同的平台上执行目标检测。这里的“插件”可能指的是它可以集成到其他软件或系统中,以实现自动化的目标检测功能。 压缩包内的文件`yolov5-7.0`可能是指YOLOv5的第7个版本源代码,这通常包含了模型的Python实现,模型结构定义,训练脚本,以及相关的数据处理工具等。用户可以解压此文件,根据提供的文档和示例,学习如何运行模型进行预测,训练自己的数据集,或者调整模型参数以优化性能。 总结一下,YOLOv5是一个先进的目标检测框架,`yolov5n.pt`和`yolov5s.pt`是不同规模的预训练模型权重,可用于不同需求的场景。这个资源包提供了一种离线获取YOLOv5完整组件的方式,包括源代码和预训练模型,方便用户在无法访问外网时进行目标检测工作。对于想要在计算机视觉项目中实施目标检测的开发者来说,这是一个非常有价值的资源。
2024-10-16 20:33:13 17.28MB yolov5 目标检测
1
在IT领域,目标检测是一项关键的技术,特别是在遥感图像分析中。遥感图像数据集是进行这类任务的基础,它提供大量的图像以及相应的标注信息,帮助机器学习算法学习和理解目标的特征,进而实现准确的定位和识别。在这个特定的数据集中,我们看到它专为yolov5模型进行了优化,yolov5是一款高效且流行的深度学习目标检测框架。 我们需要了解目标检测的基本概念。目标检测是计算机视觉领域的一个子任务,它的目的是在图像中找出特定对象并确定它们的位置。这涉及到分类(识别是什么)和定位(确定在哪里)两个步骤。遥感图像目标检测则更具有挑战性,因为这些图像通常包含广阔的地理区域,图像中的目标可能有各种大小和形状,且受到光照、云层、遮挡等因素的影响。 接着,我们来看这个数据集的结构。它分为训练集、验证集和测试集,这是机器学习中常见的数据划分方式。训练集用于训练模型,验证集用于调整模型参数和防止过拟合,而测试集则用于评估模型的泛化能力。1400张图像的数量对于训练深度学习模型来说是相当可观的,能提供足够的样本来学习复杂的特征。 数据集已经处理为适用于yolov5的格式。yolov5是一个基于YOLO(You Only Look Once)系列的目标检测模型,它以其快速的推理速度和良好的检测性能而闻名。YOLO系列模型采用了一种单阶段的检测方法,直接从图像中预测边界框和类别概率,简化了传统两阶段检测器的复杂流程。对于遥感图像,yolov5可能已经针对小目标检测进行了优化,因为遥感图像中的物体往往比普通相机图像中的小得多。 在使用这个数据集时,你需要将`datasets`这个压缩包解压,里面应包含训练、验证和测试集的图像及其对应的标注文件。标注文件通常是以XML或JSON格式,记录了每个目标的边界框坐标和类别信息。这些信息将与yolov5的训练流程相结合,通过反向传播更新网络权重,以最小化预测结果与真实标注之间的差异。 在训练过程中,你可以使用yolov5提供的工具和脚本,如`train.py`,设置超参数如学习率、批大小、训练轮数等。同时,验证集上的性能可以用来决定何时停止训练,避免过拟合。使用测试集评估模型的最终性能,衡量指标可能包括平均精度(mAP)、召回率、精确率等。 这个"用于目标检测的遥感图像数据集"提供了丰富的资源,适合研究和开发遥感图像目标检测的应用。结合强大的yolov5框架,可以构建出高效且准确的目标检测系统,应用于城市规划、灾害监测、环境监控等多个领域。
2024-10-15 22:18:52 439.51MB 目标检测 数据集
1
YOLOV8多任务(车道线检测+目标检测+可行驶区域)模型项目源码(带数据,可一键运行)
2024-10-15 22:15:19 229.22MB 目标检测
1
C# OpenCvSharp DNN 部署yolov4目标检测 源码 博客地址:https://blog.csdn.net/weixin_46771779/article/details/136052644
2024-10-13 12:53:31 248.02MB dnn 目标检测
1
通用Yolov8检测GUI,直接替换权重即可!免费!免费!免费!
2024-10-06 00:32:21 4KB 目标检测
1
YOLOv8是一种高效的目标检测模型,它是YOLO(You Only Look Once)系列的最新版本。YOLO系列以其快速和准确的实时目标检测能力而闻名,而YOLOv8则在此基础上进行了优化,提升了检测速度和精度。在本项目中,开发者使用了ONNXRuntime作为推理引擎,结合OpenCV进行图像处理,实现了YOLOv8的目标检测和实例分割功能。 ONNXRuntime是一个跨平台、高性能的推理引擎,它支持多种深度学习框架导出的ONNX(Open Neural Network Exchange)模型。ONNX是一种开放标准,可以方便地在不同的框架之间转换和运行模型。利用ONNXRuntime,开发者能够轻松地将训练好的YOLOv8模型部署到各种环境中,实现高效的推理。 OpenCV是一个强大的计算机视觉库,提供了丰富的图像处理和分析功能。在目标检测和实例分割任务中,OpenCV可以用于预处理输入图像,如缩放、归一化等,以及后处理预测结果,例如框的绘制和NMS(非极大值抑制)操作,以去除重叠的边界框。 YOLOv8模型在目标检测方面有显著提升,采用了更先进的网络结构和优化技术。相比于之前的YOLO版本,YOLOv8可能包含了一些新的设计,比如更高效的卷积层、自注意力机制或其他改进,以提高特征提取的效率和准确性。同时,实例分割是目标检测的延伸,它不仅指出图像中物体的位置,还能区分同一类别的不同实例,这对于复杂的场景理解和应用至关重要。 在这个项目实战中,开发者可能详细介绍了如何将YOLOv8模型转换为ONNX格式,然后在ONNXRuntime中加载并执行推理。他们可能还演示了如何使用OpenCV来处理图像,与YOLOv8模型接口交互,以及如何解析和可视化检测结果。此外,项目可能还包括了性能测试,展示了YOLOv8在不同硬件环境下的运行速度,以及与其他目标检测模型的比较。 这个项目提供了深入实践YOLOv8目标检测和实例分割的完整流程,对理解深度学习模型部署、计算机视觉库的使用,以及目标检测和实例分割算法有极大的帮助。通过学习和研究这个项目,开发者可以掌握相关技能,并将这些技术应用于自己的实际项目中,如智能监控、自动驾驶等领域。
2024-09-20 15:10:19 7.46MB ONNXRuntime OpenCV 目标检测 实例分割
1