### 自学式学习:从无标签数据中进行迁移学习 #### 概述 自学式学习(self-taught learning)是一种新型的机器学习框架,旨在利用无标签数据来提高监督分类任务的表现。与传统的半监督学习或迁移学习不同,自学式学习不假设无标签数据遵循与有标签数据相同的类别标签或生成分布。这意味着可以使用大量从互联网随机下载的无标签图像、音频样本或文本文档来改进特定图像、音频或文本分类任务的表现。由于这类无标签数据获取相对容易,因此自学式学习在许多实际的学习问题中具有广泛的应用前景。 #### 主要贡献 本文提出了一个实现自学式学习的方法,该方法利用稀疏编码来构建使用无标签数据形成的更高级特征。这些特征能够形成简洁的输入表示,并显著提高分类性能。当使用支持向量机(SVM)进行分类时,作者还展示了如何为这种表示学习Fisher核的方法。 #### 自学式学习框架 自学式学习的关键在于如何有效地利用无标签数据。为了实现这一目标,文章提出了一种基于稀疏编码的特征构建方法。具体来说: - **稀疏编码**:通过稀疏编码技术,可以从大量的无标签数据中学习到一组稀疏表示。这些表示通常包含了一些对数据有意义的特征,这些特征可能对于后续的分类任务非常有用。 - **特征构建**:通过对无标签数据集应用稀疏编码,可以得到一系列稀疏特征,这些特征进一步被用来构建更高层次的表示。这些高级表示捕捉了数据中的结构化信息,有助于提升分类器的表现。 - **分类器训练**:将构建好的高级特征作为输入,用于训练分类器(如支持向量机)。对于支持向量机而言,还可以进一步优化其内核函数(如Fisher核),以更好地适应特定的任务需求。 #### 实验验证 文章通过一系列实验验证了自学式学习的有效性。实验结果表明,在有限的有标签数据情况下,通过利用大量易于获取的无标签数据,能够显著提高分类任务的准确率。这为解决现实世界中经常面临的有标签数据稀缺问题提供了一种新的解决方案。 #### 结论与展望 自学式学习作为一种新兴的学习框架,为解决监督学习中常见的有标签数据不足问题提供了一个新的视角。通过利用广泛存在的无标签数据资源,不仅能够在一定程度上缓解数据标注的成本问题,还能够有效提升模型的泛化能力。未来的研究方向包括探索更多有效的特征构建方法以及如何在不同的应用场景中更高效地利用无标签数据等。 #### 总结 自学式学习是吴恩达等人提出的一种机器学习框架,它利用无标签数据来改进监督分类任务的性能。这种方法不依赖于无标签数据和有标签数据之间存在相同的类别标签或生成分布,而是通过稀疏编码等技术构建更高层次的特征表示,从而改善分类效果。自学式学习为处理实际问题中常见的有标签数据稀缺问题提供了一个有力工具,具有重要的理论意义和应用价值。
2025-09-27 19:54:23 474KB 迁移学习 吴恩达 自我学习
1
基于一维CNN的轴承故障诊断迁移学习代码复现:从源域到目标域的特征提取与分布对齐实践,基于迁移学习的轴承故障诊断代码复现:一维CNN特征提取与JDA联合对齐的实现过程,top一区轴承诊断迁移学习代码复现 故障诊断代码 复现 首先使用一维的cnn对源域和目标域进行特征提取,域适应阶段:将源域和目标域作为cnn的输入得到特征,然后进行边缘概率分布对齐和条件概率分布对齐,也就是进行JDA联合对齐。 此域适应方法特别适合初学者了解迁移学习的基础知识,特别推荐,学生问价有优惠 ●数据预处理:1维数据 ●网络模型:1D-CNN-MMD-Coral ●数据集:西储大学CWRU ●准确率:99% ●网络框架:pytorch ●结果输出:损失曲线图、准确率曲线图、混淆矩阵、tsne图 ●使用对象:初学者 ,核心关键词: 一区轴承诊断; 迁移学习; 代码复现; 特征提取; 域适应; JDA联合对齐; 数据预处理; 1D-CNN-MMD-Coral; 西储大学CWRU数据集; 准确率; pytorch框架; 结果输出图示; 初学者。,复现一维CNN迁移学习轴承故障诊断代码:从基础到高级的深度学习之旅
2025-09-23 13:53:02 1.81MB
1
如何利用一维卷积神经网络(1D-CNN)结合迁移学习技术,在轴承故障诊断中实现源域和目标域的联合对齐。具体步骤包括数据预处理、构建1D-CNN-MMD-Coral网络模型、实施边缘概率分布对齐和条件概率分布对齐(即JDA联合对齐),并在CWRU数据集上进行了实验验证。文中提供了详细的代码片段,涵盖了数据加载、模型定义、训练循环以及结果可视化的全过程。最终结果显示,在目标域仅有10%标注数据的情况下,模型仍能达到97%以上的准确率。 适合人群:机械工程领域的研究人员、从事故障诊断工作的工程师、对迁移学习感兴趣的初学者。 使用场景及目标:适用于需要解决不同工况下轴承故障诊断问题的研究人员和技术人员。主要目标是通过迁移学习减少对大量标注数据的需求,提高模型的泛化能力。 其他说明:文中还分享了一些实践经验,如避免在预处理时进行标准化、选择合适的batch size、加入自注意力机制等技巧,有助于提高模型性能。
2025-09-22 16:05:35 754KB
1
基于Matlab的迁移学习技术用于滚动轴承故障诊断,振动信号转图像处理并高精度分类,基于Matlab的迁移学习滚动轴承故障诊断系统:高准确率,简易操作,Matlab 基于迁移学习的滚动轴承故障诊断 1.运行环境Matlab2021b及以上,该程序将一维轴承振动信号转为二维尺度图图像并使用预训练网络应用迁移学习对轴承故障进行分类,平均准确率在98%左右。 2.使用MATLAB自带的Squeezenet模型进行迁移学习,若没有安装Squeezenet模型支持工具,在命令窗口输入squeezenet,点击下载链接进行安装。 3.程序经过验证,保证程序可以运行。 4.程序均包含详细注释。 ,关键词:Matlab; 迁移学习; 滚动轴承故障诊断; 振动信号转换; 二维尺度图; 预训练网络; Squeezenet模型; 平均准确率; 程序验证; 详细注释。,基于Matlab的迁移学习轴承故障诊断系统:振动信号二维化与Squeezenet应用
2025-09-21 18:50:55 3.43MB kind
1
内容概要:本文介绍了基于Matlab 2021b及以上版本的迁移学习在滚动轴承故障诊断中的应用。程序主要分为四个部分:数据预处理、模型加载、迁移学习以及故障分类。首先,对一维轴承振动信号进行预处理,将其转换为二维尺度图图像。接着,加载MATLAB自带的Squeezenet模型进行迁移学习,通过对预训练模型的调整,使其适应轴承故障诊断的任务。最后,使用调整后的模型对轴承故障进行分类,输出分类结果及准确率。实验结果显示,该方法的平均准确率约为98%,并且程序已验证可以正常运行,所有关键步骤都附有详细注释。 适合人群:机械工程领域的研究人员和技术人员,尤其是那些对滚动轴承故障诊断感兴趣的从业者。 使用场景及目标:①用于工业设备维护和故障预测;②提高轴承故障诊断的准确性,减少停机时间;③帮助工程师理解迁移学习在实际应用中的具体实现。 阅读建议:读者应具备一定的Matlab编程基础和基本的机器学习概念,以便更好地理解和应用文中提供的方法和技术。
2025-09-21 16:05:15 1.81MB
1
Matlab迁移学习算法助力轴承故障诊断:准确率高达98%,附带详细注释的程序,基于Matlab的迁移学习滚动轴承故障诊断系统:高准确率,简易操作,Matlab 基于迁移学习的滚动轴承故障诊断 1.运行环境Matlab2021b及以上,该程序将一维轴承振动信号转为二维尺度图图像并使用预训练网络应用迁移学习对轴承故障进行分类,平均准确率在98%左右。 2.使用MATLAB自带的Squeezenet模型进行迁移学习,若没有安装Squeezenet模型支持工具,在命令窗口输入squeezenet,点击下载链接进行安装。 3.程序经过验证,保证程序可以运行。 4.程序均包含详细注释。 ,Matlab; 迁移学习; 滚动轴承故障诊断; 一维振动信号转换; 二维尺度图图像; 预训练网络; Squeezenet模型; 平均准确率; 程序验证; 详细注释。,基于Matlab的迁移学习轴承故障诊断系统:振动信号二维化与Squeezenet应用
2025-09-21 09:03:14 2.16MB
1
YOLO模型的优化与加速方法,旨在提高目标检测的速度和精度。首先,介绍了YOLO模型的基本架构和版本演变,包括YOLOv5的结构特点。接着,重点讨论了模型架构的优化,包括更高效的Backbone(如CSPDarknet53)、激活函数(如Leaky ReLU和Swish)以及增强型特征融合(如PANet)。然后,深入分析了数据处理的优化方法,包括数据增强、预处理和数据加载优化。训练技巧方面,介绍了学习率调度、正则化技术(如Dropout和Batch Normalization)以及迁移学习的应用。最后,探讨了硬件加速技术,包括GPU、TensorRT优化和FPGA加速,强调了通过不同技术手段提升YOLO模型的实际性能。本文通过丰富的源码示例和技术细节,为YOLO模型的实际应用提供了全面的优化方案。
2025-07-28 16:05:50 8KB 目标检测 batch 迁移学习 fpga开发
1
内容概要:本文深入探讨了基于 PyTorch 的迁移学习实战,重点讲解了模型微调和特征提取的最佳实践方法。文章首先介绍了迁移学习的基本概念及其在深度学习中的重要性,解释了如何通过迁移学习将已有模型的知识迁移到新任务中,以减少训练时间和计算资源的消耗。随后,详细描述了 PyTorch 的特性及其在迁移学习中的优势,包括动态计算图、丰富的工具和接口等。接着,文章分步骤介绍了模型微调的具体操作,如预训练模型的选择、冻结与解冻层设置、调整模型结构、定义损失函数和优化器、数据集准备与预处理、模型训练与评估等。此外,还讨论了特征提取的原理和方法,包括使用预训练模型的特定层进行特征提取和构建自定义特征提取网络,并展示了特征在图像分类、目标检测和图像分割等下游任务中的应用。最后,通过花卉分类和目标检测两个实战案例,展示了迁移学习的实际应用效果,并总结了常见问题及其解决方案,展望了迁移学习和 PyTorch 的未来发展。 适合人群:具备一定编程基础,对深度学习和迁移学习有一定了解的研发人员和技术爱好者。 使用场景及目标:①理解迁移学习的基本原理及其在深度学习中的应用;②掌握基于 PyTorch 的模型微调和特征提取的具体操作;③通过实战案例学习如何在实际项目中应用迁移学习技术,提高模型性能。 其他说明:本文不仅提供了详细的理论阐述和代码示例,还通过实战案例帮助读者更好地掌握迁移学习技术。在学习过程中,建议读者结合实际项目进行实践,并根据具体需求调整模型和参数设置。
2025-06-18 23:38:52 54KB PyTorch 迁移学习 模型微调 特征提取
1
MindSpore 框架下基于ResNet50迁移学习的方法实现花卉数据集图像分类(5类)
2024-07-28 17:00:53 613.56MB 迁移学习 数据集 python
1
乳腺肿瘤计算机辅助诊断(CAD)系统在医学检测和诊断中的应用日益重要。为了区分核磁共振图像(MRI)中肿瘤与非肿瘤,利用深度学习和迁移学习方法,设计了一种新型乳腺肿瘤CAD系统:1)对数据集进行不平衡处理和数据增强;2)在MRI数据集上,利用卷积神经网络(CNN)提取CNN特征,并利用相同的支持向量机分类器,计算每层CNN的特征图的分类F1分数,选取分类性能最高的一层作为微调节点,其后维度较低层为连接新网络节点;3)在选取的网络接入节点,连接新设计的两层全连接层组成新的网络,利用迁移学习,对新网络载入权重;4)采用固定微调节点前的网络层不可训练,其余层可训练的方式微调。分别基于深度卷积网络(VGG16)、Inception V3、深度残差网络(ResNet50)构建的CAD系统,性能均高于主流的CAD系统,其中基于VGG16和ResNet50搭建的系统性能突出,且二次迁移可以提高VGG16系统性能。
1