全概率分布可以回答相关领域的任何问题,但随着变量数目的增 加,全概率分布的联合取值空间却可能变得很大。另外,对所有的原 子事实给出概率,对用户来说也非常困难。 若使用Bayes 规则,就可以利用变量之间的条件独立关系简化计 算过程,大大降低所需要声明的条件概率的数目。我们可以用一个叫 作Bayesian 网的数据结构来表示变量之间的依赖关系,并为全概率分 布给出一个简明的表示。 定义(Bayesian 网):Bayesian 网T 是一个三元组(N,A,P),其 中 1. N 是节点集合 2. A 是有向弧集合,与N 组成有限非循环图G =(N,A) 3. P {p(V | ) :V N} v    ,其中 v  代表节点V 的父亲节点集合 Bayesian 网是一个有向非循环图: (1) 网中节点与知识领域的随机变量一一对应(下文中不区分节 点与变量); (2)网中的有向弧表示变量间的因果关系,从节点X 到节点Y 有 向弧的直观含义是X 对Y 有直接的因果影响;影响的强度或者说不确 定性由条件概率表示; (3)每个节点有一个条件概率表,定量描述其所有父亲节点对于 该节点的作用效果。 -2- (4)由领域专家给定网络结构和条件概率表。 )由领域专家给定网络结构和条件概率表。 )由领域专家给定网络结构和条件概率表。 )由领域专家给定网络结构和条件概率表。 )由领域专家给定网络结构和条件概率表。 )由领域专家给定网络结构和条件概率表。 )由领域专家给定网络结构和条件概率表。 )由领域专家给定网络结构和条件概率表。 )由领域专家给定网络结构和条件概率表。 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 对领域专家来说,决定在特中存哪些条件独立联系通常是 较容易的 较容易的 较容易的 (给定网络结构相对容易 给定网络结构相对容易 给定网络结构相对容易 给定网络结构相对容易 给定网络结构相对容易 )─ 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 事实上,要远比际声明出这 些概率本身容易得多 些概率本身容易得多 些概率本身容易得多 些概率本身容易得多 些概率本身容易得多 (给定准确的条件概率相对 给定准确的条件概率相对 给定准确的条件概率相对 给定准确的条件概率相对 给定准确的条件概率相对 给定准确的条件概率相对 困难) 。一旦 。一旦 。一旦 BayesianBayesianBayesianBayesianBayesian Bayesian网的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率网的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率网的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率网的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率网的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率网的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率网的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率网的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率网的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率网的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率网的拓扑结构给定, 则只需对那些直接相互依赖节点出条件概率网
2025-04-28 14:18:00 705KB 贝叶斯 贝叶斯网络
1
本项目“毕业设计源码-python155基于贝叶斯网络的城市火灾预测方法-项目实战.zip”,主要致力于运用贝叶斯网络对城市火灾进行预测。其功能在于,通过收集城市中与火灾相关的各类因素数据,如建筑特征、电气设备情况、火源分布、气象条件等,构建起全面的数据库。基于这些数据,利用贝叶斯网络强大的概率推理能力,建立起城市火灾预测模型,从而对城市中不同区域在特定时间内发生火灾的概率进行预测,辅助城市管理者提前制定有效的消防策略和资源配置计划。项目框架主要包括数据采集与预处理、贝叶斯网络模型搭建与训练、预测结果输出与分析等模块。开发此项目旨在为城市消防安全提供一种科学、有效的预测手段,提高城市应对火灾的能力。 项目为完整毕设源码,先看项目演示,希望对需要的同学有帮助。
2025-04-25 14:25:44 15.23MB python 源码 Django flask
1
《WinBUGS14》是一款专门用于贝叶斯网络建模和分析的软件,它在IT领域,特别是在数据分析和人工智能中扮演着重要角色。本文将深入探讨WinBUGS14的功能、工作原理以及如何利用其进行贝叶斯统计分析。 让我们了解什么是贝叶斯网络。贝叶斯网络是一种概率图模型,它基于贝叶斯定理,用于表示变量之间的条件依赖关系。在大数据时代,这种模型特别适合处理复杂系统中的不确定性问题,例如医疗诊断、风险评估和机器学习中的分类任务。 WinBUGS14是贝叶斯分析的重要工具,它的全名是Windows Bayesian Inference Using Gibbs Sampling,顾名思义,它使用Gibbs采样算法进行后验概率分布的模拟。Gibbs采样是一种马尔科夫链蒙特卡洛(MCMC)方法,它允许我们通过迭代生成样本来近似难以直接计算的多维概率分布。 在WinBUGS14中,用户可以定义自己的贝叶斯模型,包括随机变量、先验分布和数据模型。软件会自动执行Gibbs采样,生成一系列的后验样本,从而估计参数的后验分布。这些样本可以用来计算后验均值、可信区间以及其他统计量,为决策提供依据。 刘晋等人的文章《贝叶斯统计分析的新工具— Stan》中提到了Stan,这是另一个强大的贝叶斯分析软件,与WinBUGS相比,Stan具有更快的采样速度和更灵活的模型定义能力,但WinBUGS14以其易用性和广泛的应用案例,仍然是许多研究者和实践者的首选工具。 使用WinBUGS14进行数据分析通常包括以下步骤: 1. **模型定义**:根据研究问题,定义变量间的结构和概率模型。 2. **编程输入**:使用BUGS语言编写模型代码,输入到WinBUGS14中。 3. **数据输入**:导入观测数据,这些数据将与模型结合,进行后验概率计算。 4. **运行采样**:启动Gibbs采样器,获取后验样本。 5. **结果分析**:分析采样结果,包括参数的后验分布、点估计和不确定性度量。 6. **模型解释**:根据分析结果解释模型含义,进行决策或预测。 在实际应用中,WinBUGS14常被用于疾病预测、金融风险评估、环境科学等领域,通过对大数据的贝叶斯分析,可以揭示隐藏的模式和趋势,为决策提供科学支持。 WinBUGS14是一款强大的贝叶斯统计分析工具,它借助Gibbs采样技术处理复杂的贝叶斯模型,适用于处理大数据背景下的不确定性问题。尽管有Stan这样的新工具出现,但WinBUGS14因其易用性仍被广泛使用,对于理解和应用贝叶斯网络理论,它是不可或缺的工具。
2025-04-10 16:19:22 2.32MB 人工智能 贝叶斯网络
1
从数据中学习结构是贝叶斯网络研究最重要的基本任务之一。 特别地,学习贝叶斯网络的可选结构是一个不确定的多项式时间(NP)难题。 为了解决这个问题,已经提出了许多启发式算法,并且其中一些在不同类型的先验知识的帮助下学习贝叶斯网络结构。 然而,现有算法对先验知识有一些限制,例如质量限制和使用限制。 这使得很难在这些算法中很好地利用先验知识。 在本文中,我们将先验知识引入了马尔可夫链蒙特卡洛(MCMC)算法,并提出了一种称为约束MCMC(C-MCMC)算法的算法来学习贝叶斯网络的结构。 定义了三种类型的先验知识:父节点的存在,父节点的不存在以及分布知识,包括边缘的条件概率分布(CPD)和节点的概率分布(PD)。 所有这些类型的先验知识都可以轻松地用在该算法中。 我们进行了广泛的实验,以证明所提出的方法C-MCMC的可行性和有效性。
2024-04-09 10:39:16 2.16MB 研究论文
1
2023.10.2官网发布的新版本。下载完成后,填写学生姓名和学校就可以免费使用,请勿商用。 用于构建、学习和探索贝叶斯网络和其他概率图形模型。
2024-03-06 19:01:48 19.31MB 网络 网络
1
java编写的贝叶斯网络分类器(贝叶斯算法java版本的代码) JavaBayes-0.346.zip JavaBayes-javadoc-0.346.jar JavaBayes-manual-0.346.ps.gz
2023-11-09 07:05:05 901KB 贝叶斯
1
贝叶斯网络参数学习 课程项目-COL884(Spring'18):人工智能的不确定性 创作者:Navreet Kaur [2015TT10917] 客观的: 警报贝叶斯网络给定数据的贝叶斯参数学习,每行最多有一个缺失值。 使用的算法: 期望最大化 目标: 这项任务的目的是获得学习贝叶斯网络的经验,并了解它们在现实世界中的价值。 设想: 医学诊断。 一些医学研究人员创建了贝叶斯网络,该网络对(某些)疾病和观察到的症状之间的相互关系进行建模。 作为计算机科学家,我们的工作是根据健康记录来学习网络的参数。 不幸的是,在现实世界中,某些记录缺少值。 我们需要尽力计算网络参数,以便以后可以将其用于诊断。 问题陈述: 我们得到了由研究人员创建的贝叶斯网络(如BayesNet.png所示),注意此处对八种诊断进行了建模:血容量不足,左心衰竭,过敏React,镇痛不足,肺栓塞,插管,弯管和断线。
1
贝叶斯网络可视化工具genie_academic最新版,具有参数学习、结构学习等功能。学术版,请勿用于商业用途。
2023-04-10 15:52:17 15.66MB 贝叶斯网络
1
基于粗糙集理论和贝叶斯网络的电力变压器故障诊断方法
2023-04-06 17:44:06 284KB 基于粗糙集理论和贝叶斯网络
1
dbn matlab代码BNT-SM 用于学生建模的贝叶斯网络工具箱(BNT-SM)旨在促进在学生建模社区中使用动态贝叶斯网络。 BNT-SM输入了一个数据集和一个由研究人员假设的贝叶斯网络模型的紧凑XML规范,该模型用于描述学生知识与观察到的行为之间的因果关系。 BNT-SM使用贝叶斯网络工具箱生成并执行代码以训练和测试模型。 BNT-SM使研究人员可以轻松地探索关于学生模型中知识表示的不同假设。 例如,通过改变贝叶斯网络的图形结构,我们研究了补习干预如何影响学生的知识状态-干预是可能脚手架还是可以帮助学生学习。 安装 BNT-SM是在Matlab中实现的,因此您需要安装并运行Matlab。 典型用法示例 下载并解压缩BNT-SM后,启动Matlab并执行 >> cd src >> setup >> cd ../model/kt >> [property evidence hash_bnet] = RunBnet('property.xml'); Property.xml是一个XML文件,用于指定我们正在构建的贝叶斯网络。 在目录BNT-SM / model中,您可以找到其他一些贝叶
2023-03-27 10:03:03 2KB 系统开源
1