基于先验知识的贝叶斯网络结构学习算法

上传者: 38550605 | 上传时间: 2024-04-09 10:39:16 | 文件大小: 2.16MB | 文件类型: PDF
从数据中学习结构是贝叶斯网络研究最重要的基本任务之一。 特别地,学习贝叶斯网络的可选结构是一个不确定的多项式时间(NP)难题。 为了解决这个问题,已经提出了许多启发式算法,并且其中一些在不同类型的先验知识的帮助下学习贝叶斯网络结构。 然而,现有算法对先验知识有一些限制,例如质量限制和使用限制。 这使得很难在这些算法中很好地利用先验知识。 在本文中,我们将先验知识引入了马尔可夫链蒙特卡洛(MCMC)算法,并提出了一种称为约束MCMC(C-MCMC)算法的算法来学习贝叶斯网络的结构。 定义了三种类型的先验知识:父节点的存在,父节点的不存在以及分布知识,包括边缘的条件概率分布(CPD)和节点的概率分布(PD)。 所有这些类型的先验知识都可以轻松地用在该算法中。 我们进行了广泛的实验,以证明所提出的方法C-MCMC的可行性和有效性。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明