"多模态特征融合的遥感图像语义分割网络" 本文介绍了一种多模态特征融合的遥感图像语义分割网络,称为MMFNet。该网络能够融合 IRRG(Infrared、Red、Green)图像和 DSM(Digital Surface Model)图像,提取融合后的特征,并使用残差解码块(Residual Decoding Block, RDB)和复合空洞空间金字塔(Complex Atrous Spatial Pyramid Pooling, CASPP)模块提取跳跃连接的多尺度特征。 MMFNet 网络的架构主要包含以下几个部分: 1. 编码器:使用双输入流的方式同时提取 IRRG 图像的光谱特征和 DSM 图像的高度特征。 2. 解码器:使用残差解码块(Residual Decoding Block, RDB)提取融合后的特征,并使用密集连接的方式加强特征的传播和复用。 3. 复合空洞空间金字塔(Complex Atrous Spatial Pyramid Pooling, CASPP)模块:提取跳跃连接的多尺度特征。 实验结果表明,MMFNet 网络在国际摄影测量与遥感学会(International Society for Photogrammetry and Remote Sensing, ISPRS)提供的 Vaihingen 和 Potsdam 数据集上取得了 90.44%和 90.70%的全局精确度,相比较与 DeepLabV3+、OCRNet 等通用分割网络和 CEVO、UFMG_4 等同数据集专用分割网络具有更高的分割精确度。 本文的贡献在于: 1. 提出了多模态特征融合的遥感图像语义分割网络,能够融合 IRRG 图像和 DSM 图像,提高了遥感图像语义分割的精确度。 2. 引入了残差解码块(Residual Decoding Block, RDB)和复合空洞空间金字塔(Complex Atrous Spatial Pyramid Pooling, CASPP)模块,提高了网络的表达能力和泛化能力。 本文提出了一个多模态特征融合的遥感图像语义分割网络,能够提高遥感图像语义分割的精确度和泛化能力,有助于国土资源规划、智慧城市等领域的应用。
2024-07-01 16:47:59 1.49MB
1
用于stable diffusion的control net里的seg模型处理; 让你快速查阅对应的颜色代表的物体是什么,快色编辑修改图片里的色块区域,定制你的专属图片; 尤其适合用于ai室内设计。
2024-07-01 15:03:29 27KB 人工智能
1
直接下载文件,使用README安装即可,解压到本地以后使用pycharm2021.3打开setup.py然后进行自动安装如果报错,可以查看我的安装教程
2024-05-31 13:02:22 1.26MB 深度学习 Detectron2 语义分割 视觉检测
1
svm支持向量机python代码 机器学习语义分割-随机森林,支持向量机,GBC Machine learning semantic segmentation - Random Forest, SVM, GBC.zip
2024-05-21 18:39:18 4.69MB 机器学习 随机森林 支持向量机
1
深度学习语义分割经典论文,主要为2014到2017年的论文
2024-05-04 18:02:12 31.62MB 语义分割
1
上面包含halcon预处理全过程
2024-04-19 10:46:48 23KB 深度学习
1
yolo实现语义分割(cityscapes数据集)附源码 语义分割是当今计算机视觉领域的关键问题之⼀。从宏观上看,语义分割是⼀项⾼层次的任务,为实现场景的完整理解铺平了道路
2024-03-27 09:57:02 665KB 数据集
1
将labelme数据标注格式转换为YoloV8语义分割数据集,并可自动划分训练集和验证集
2023-11-20 16:33:22 1.95MB 数据集 人工智能 深度学习
1
使用Darknet作图像语义分割时提供参考。找了好几个资源都没有合适的,提供给同样需要的人.
2023-05-12 20:26:47 5.64MB Deeplearning Darknet
1
KITTI语义分割数据集,包含200张训练图像及200张测试图像
2023-04-29 23:20:48 312.52MB 语义分割
1