(免费)UNet语义分割-源码

上传者: 46412999 | 上传时间: 2025-05-09 13:49:45 | 文件大小: 104.47MB | 文件类型: RAR
标题中的"(免费)UNet语义分割-源码"表明了这个压缩包内容的核心,即提供了基于UNet架构的语义分割模型的源代码。UNet是一种在图像分割领域广泛应用的深度学习网络模型,尤其在医学图像分析、遥感图像处理等方面有着出色的表现。 描述中的"如何使用请搜索我的博客“(完结篇)什么是语义分割?原理+手写代码实现?”"提示我们,若要了解如何使用这些源代码,可以参考作者的博客文章。语义分割是计算机视觉中的一个重要任务,它的目标是将图像像素分配到预定义的类别中,从而实现对图像内容的理解和解析。在这个过程中,UNet因其特有的架构特点,能够有效地处理具有复杂结构的输入图像,并且保持较高的准确性。 标签中的"软件/插件"可能意味着提供的源代码可以作为一个模块或插件集成到其他软件系统中。"语义分割"进一步确认了这是关于图像处理的项目。"UNet"标签明确指出了所使用的网络模型。"源代码"表示这里包含的是可以直接编译和运行的程序代码,而非预训练模型或者二进制执行文件。 在压缩包中的"handle_UNet"文件可能是整个源代码项目的主文件或者一个关键处理模块,用于操作和运行UNet模型的代码可能就包含在这个文件中。通常,这样的文件会包括模型的构建、训练、验证以及推理等步骤。 关于UNet模型,它由卷积神经网络(CNN)构成,主要特点是其对称的架构,即编码器和解码器部分。编码器部分负责捕捉图像的上下文信息,通过多个卷积层和池化层逐渐减小特征图的尺寸,增加抽象程度。解码器部分则负责恢复细节,通过上采样和与编码器的跳跃连接来结合低级特征和高级语义信息,实现精确的像素级分类。 源代码中可能包括以下关键部分: 1. 数据预处理:用于准备输入图像和对应的分割掩模,可能涉及颜色归一化、大小调整等。 2. UNet模型定义:构建网络结构,包括卷积层、池化层、反卷积层以及跳跃连接。 3. 训练过程:定义损失函数、优化器,设置训练参数,如批量大小、学习率等,进行模型训练。 4. 验证与评估:在验证集上测试模型性能,可能包括精度、IoU(交并比)等指标。 5. 推理函数:用于在新图像上应用训练好的模型进行预测。 这个压缩包提供了一个完整的UNet语义分割解决方案,包含了模型的实现和可能的使用指南。对于学习深度学习特别是图像分割的开发者来说,这是一个宝贵的资源,可以通过阅读和运行源代码深入理解UNet的工作原理及其在实际应用中的实现。

文件下载

资源详情

[{"title":"( 98 个子文件 104.47MB ) (免费)UNet语义分割-源码","children":[{"title":"handle_UNet","children":[{"title":"number_classes.py <span style='color:#111;'> 547B </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 503B </span>","children":null,"spread":false},{"title":"rename.py <span style='color:#111;'> 744B </span>","children":null,"spread":false},{"title":"GPU","children":null,"spread":false},{"title":".idea","children":[{"title":"workspace.xml <span style='color:#111;'> 8.98KB </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 201B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"datasets","children":[{"title":"SegmentationClass","children":[{"title":"make_mask","children":[{"title":"9.png <span style='color:#111;'> 785B </span>","children":null,"spread":false},{"title":"1.png <span style='color:#111;'> 2.60KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"JPEGImages","children":[{"title":"29.png <span style='color:#111;'> 94.93KB </span>","children":null,"spread":false},{"title":"31.png <span style='color:#111;'> 131.57KB </span>","children":null,"spread":false},{"title":"28.png <span style='color:#111;'> 147.72KB </span>","children":null,"spread":false},{"title":"30.png <span style='color:#111;'> 287.81KB </span>","children":null,"spread":false},{"title":"19.png <span style='color:#111;'> 186.65KB </span>","children":null,"spread":false},{"title":"10.png <span style='color:#111;'> 281.57KB </span>","children":null,"spread":false},{"title":"9.png <span style='color:#111;'> 102.02KB </span>","children":null,"spread":false},{"title":"3.png <span style='color:#111;'> 4.38MB </span>","children":null,"spread":false},{"title":"36.png <span style='color:#111;'> 2.16MB </span>","children":null,"spread":false},{"title":"35.png <span style='color:#111;'> 348.74KB </span>","children":null,"spread":false},{"title":"12.png <span style='color:#111;'> 129.94KB </span>","children":null,"spread":false},{"title":"24.png <span style='color:#111;'> 384.46KB </span>","children":null,"spread":false},{"title":"25.png <span style='color:#111;'> 63.32KB </span>","children":null,"spread":false},{"title":"15.png <span style='color:#111;'> 231.99KB </span>","children":null,"spread":false},{"title":"1.png <span style='color:#111;'> 4.58MB </span>","children":null,"spread":false},{"title":"34.png <span style='color:#111;'> 28.25KB </span>","children":null,"spread":false},{"title":"23.png <span style='color:#111;'> 1.91MB </span>","children":null,"spread":false},{"title":"11.png <span style='color:#111;'> 57.36KB </span>","children":null,"spread":false},{"title":"13.png <span style='color:#111;'> 102.02KB </span>","children":null,"spread":false},{"title":"6.png <span style='color:#111;'> 5.07MB </span>","children":null,"spread":false},{"title":"27.png <span style='color:#111;'> 3.80MB </span>","children":null,"spread":false},{"title":"5.png <span style='color:#111;'> 696.59KB </span>","children":null,"spread":false},{"title":"4.png <span style='color:#111;'> 696.59KB </span>","children":null,"spread":false},{"title":"8.png <span style='color:#111;'> 163.82KB </span>","children":null,"spread":false},{"title":"21.png <span style='color:#111;'> 1.48MB </span>","children":null,"spread":false},{"title":"17.png <span style='color:#111;'> 46.06KB </span>","children":null,"spread":false},{"title":"33.png <span style='color:#111;'> 1.63MB </span>","children":null,"spread":false},{"title":"16.png <span style='color:#111;'> 1.74MB </span>","children":null,"spread":false},{"title":"32.png <span style='color:#111;'> 2.93MB </span>","children":null,"spread":false},{"title":"7.png <span style='color:#111;'> 267.45KB </span>","children":null,"spread":false},{"title":"20.png <span style='color:#111;'> 103.53KB </span>","children":null,"spread":false},{"title":"18.png <span style='color:#111;'> 244.14KB </span>","children":null,"spread":false},{"title":"2.png <span style='color:#111;'> 236.68KB </span>","children":null,"spread":false},{"title":"14.png <span style='color:#111;'> 191.17KB </span>","children":null,"spread":false},{"title":"26.png <span style='color:#111;'> 120.29KB </span>","children":null,"spread":false},{"title":"22.png <span style='color:#111;'> 46.06KB </span>","children":null,"spread":false}],"spread":false},{"title":"before","children":[{"title":"10.png <span style='color:#111;'> 281.57KB </span>","children":null,"spread":false},{"title":"9.png <span style='color:#111;'> 102.02KB </span>","children":null,"spread":false},{"title":"3.png <span style='color:#111;'> 4.38MB </span>","children":null,"spread":false},{"title":"1.png <span style='color:#111;'> 4.58MB </span>","children":null,"spread":false},{"title":"6.png <span style='color:#111;'> 5.07MB </span>","children":null,"spread":false},{"title":"9.json <span style='color:#111;'> 283.27KB </span>","children":null,"spread":false},{"title":"5.png <span style='color:#111;'> 696.59KB </span>","children":null,"spread":false},{"title":"4.png <span style='color:#111;'> 696.59KB </span>","children":null,"spread":false},{"title":"8.png <span style='color:#111;'> 163.82KB </span>","children":null,"spread":false},{"title":"1.json <span style='color:#111;'> 712.44KB </span>","children":null,"spread":false},{"title":"7.png <span style='color:#111;'> 267.45KB </span>","children":null,"spread":false},{"title":"2.png <span style='color:#111;'> 236.68KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"make_mask.py <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"data.py <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"params","children":[{"title":"unet.pth <span style='color:#111;'> 56.93MB </span>","children":null,"spread":false}],"spread":true},{"title":"watch_result.py <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"net.cpython-38.pyc <span style='color:#111;'> 3.03KB </span>","children":null,"spread":false},{"title":"utils.cpython-310.pyc <span style='color:#111;'> 461B </span>","children":null,"spread":false},{"title":"utils.cpython-38.pyc <span style='color:#111;'> 670B </span>","children":null,"spread":false},{"title":"watch_result.cpython-38.pyc <span style='color:#111;'> 982B </span>","children":null,"spread":false},{"title":"data.cpython-38.pyc <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false}],"spread":true},{"title":"test.py <span style='color:#111;'> 984B </span>","children":null,"spread":false},{"title":"net.py <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false},{"title":"trainning_image","children":[{"title":"10.png <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"9.png <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"3.png <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false},{"title":"0.png <span style='color:#111;'> 2.23KB </span>","children":null,"spread":false},{"title":"1.png <span style='color:#111;'> 687B </span>","children":null,"spread":false},{"title":"6.png <span style='color:#111;'> 966B </span>","children":null,"spread":false},{"title":"5.png <span style='color:#111;'> 543B </span>","children":null,"spread":false},{"title":"4.png <span style='color:#111;'> 789B </span>","children":null,"spread":false},{"title":"8.png <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"7.png <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"2.png <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false}],"spread":false},{"title":"相关文档","children":[{"title":"打标签.png <span style='color:#111;'> 325.59KB </span>","children":null,"spread":false},{"title":"hand_unet.txt <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false},{"title":"图片变化流程.jpg <span style='color:#111;'> 20.40KB </span>","children":null,"spread":false},{"title":"项目流程.jpg <span style='color:#111;'> 1.62MB </span>","children":null,"spread":false},{"title":"打完标签json格式.png <span style='color:#111;'> 190.80KB </span>","children":null,"spread":false},{"title":"模型.png <span style='color:#111;'> 8.04KB </span>","children":null,"spread":false},{"title":"网络架构.png <span style='color:#111;'> 360.04KB </span>","children":null,"spread":false},{"title":"图片转tensor.png <span style='color:#111;'> 326.88KB </span>","children":null,"spread":false},{"title":"训练.png <span style='color:#111;'> 312.12KB </span>","children":null,"spread":false},{"title":"训练过程中的图片显示.png <span style='color:#111;'> 14.05KB </span>","children":null,"spread":false},{"title":"handle_UNet项目文件夹架构.xmind <span style='color:#111;'> 166.04KB </span>","children":null,"spread":false},{"title":"handle_UNet.png <span style='color:#111;'> 507.90KB </span>","children":null,"spread":false},{"title":"预测可视化图.png <span style='color:#111;'> 701.06KB </span>","children":null,"spread":false},{"title":"数据集.png <span style='color:#111;'> 449.86KB </span>","children":null,"spread":false},{"title":"预测图.png <span style='color:#111;'> 352.52KB </span>","children":null,"spread":false},{"title":"y_true灰度图.png <span style='color:#111;'> 11.41KB </span>","children":null,"spread":false}],"spread":false},{"title":"evaluation","children":[{"title":"handle_evaluation.py <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false},{"title":"__pycache__","children":null,"spread":false}],"spread":false},{"title":"result","children":[{"title":"result.png <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明